Imperial College London


Faculty of MedicineDepartment of Infectious Disease

Research Associate







246Medical SchoolSt Mary's Campus





Publication Type

10 results found

Jackson H, Menikou S, Hamilton M, McArdle A, Shimizu C, Galassini R, Huang H, Kim J, Tremoulet A, de Jonge M, Kuijpers T, Wright V, Burns J, Casals-Pascual C, Herberg J, Levin M, Kaforou Met al., 2021, Kawasaki Disease patient stratification and pathway analysis based on host transcriptomic and proteomic profiles, International Journal of Molecular Sciences, Vol: 11, Pages: 1-24, ISSN: 1422-0067

The aetiology of Kawasaki Disease (KD), an acute inflammatory disorder of childhood, remains unknown despite various triggers of KD having been proposed. Host ‘omic profiles offer insights into the host response to infection and inflammation, with the interrogation of multiple ‘omic levels in parallel providing a more comprehensive picture. We used differential abundance analysis, pathway analysis, clustering and classification techniques to explore whether the host response in KD is more similar to the response to bacterial or viral infection at the transcriptomic and proteomic levels through comparison of ‘omic profiles from children with KD to those with bacterial and viral infections. Pathways activated in patients with KD included those involved in anti-viral and anti-bacterial responses. Unsupervised clustering showed that the majority of KD patients clustered with bacterial patients on both ‘omic levels, whilst application of diagnostic signatures specific for bacterial and viral infections revealed that many transcriptomic KD samples had low probabilities of having bacterial or viral infections, suggesting that KD may be triggered by a different process not typical of either common bacterial or viral infections. Clustering based on the transcriptomic and proteomic responses during KD revealed three clusters of KD patients on both ‘omic levels, suggesting heterogeneity within the inflammatory response during KD. The observed heterogeneity may reflect differences in the host response to a common trigger, or variation dependent on different triggers of the condition.

Journal article

McArdle AJ, Menikou S, 2021, What is proteomics?, Archives of Disease in Childhood: Education and Practice Edition, Vol: 106, Pages: 178-181, ISSN: 1743-0585

Proteomics is the study of a large number of proteins in biological systems. We aim to introduce the complex field to paediatricians and present some recent examples of applications to paediatric problems. Various approaches have been used to study proteomes. The current mainstay is tandem mass spectrometry of enzymatically digested proteins ('bottom-up proteomics'), and we describe the experimental and computational approach further. Proteomics can offer advantages over transcriptomics by giving direct information about proteins rather than RNA; however, typically data are obtained at lower depth and the confident identification of mass spectra can be challenging. Proteomics frequently complements transcriptomics and other -omics. Used effectively, proteomics offers promise to help answer important clinical and biological questions.

Journal article

Hoggart C, Shimizu C, Galassini R, Wright VJ, Shailes H, Bellos E, Herberg JA, Pollard AJ, O'Connor D, Choi SW, Seaby EG, Menikou S, Hibberd M, Sallah N, Burgner D, Brogan P, Patel H, Kim J, Tremoulet AH, Salo E, van Stijn D, Kuijpers T, Burns JC, Levin Met al., 2021, Identification of novel locus associated with coronary artery aneurysms and validation of loci for susceptibility to Kawasaki disease, European Journal of Human Genetics, ISSN: 1018-4813

Kawasaki disease (KD) is a paediatric vasculitis associated with coronary artery aneurysms (CAA). Genetic variants influencing susceptibility to KD have been previously identified, but no risk alleles have been validated that influence CAA formation. We conducted a genome-wide association study (GWAS) for CAA in KD patients of European descent with 200 cases and 276 controls. A second GWAS for susceptibility pooled KD cases with healthy paediatric controls from vaccine trials in the UK (n = 1609). Logistic regression mixed models were used for both GWASs. The susceptibility GWAS was meta-analysed with 400 KD cases and 6101 controls from a previous European GWAS, these results were further meta-analysed with Japanese GWASs at two putative loci. The CAA GWAS identified an intergenic region of chromosome 20q13 with multiple SNVs showing genome-wide significance. The risk allele of the most associated SNV (rs6017006) was present in 13% of cases and 4% of controls; in East Asian 1000 Genomes data, the allele was absent or rare. Susceptibility GWAS with meta-analysis with previously published European data identified two previously associated loci (ITPKC and FCGR2A). Further meta-analysis with Japanese GWAS summary data from the CASP3 and FAM167A genomic regions validated these loci in Europeans showing consistent effects of the top SNVs in both populations. We identified a novel locus for CAA in KD patients of European descent. The results suggest that different genes determine susceptibility to KD and development of CAA and future work should focus on the function of the intergenic region on chromosome 20q13.

Journal article

Menikou S, McArdle AJ, Li M-S, Kaforou M, Langford PR, Levin Met al., 2020, A proteomics-based method for identifying antigens within immune complexes, PLoS One, Vol: 15, ISSN: 1932-6203

A novel approach to recover and identify immune complexes (ICs) was developed using size exclusion chromatography (SEC) and affinity chromatography on immunoglobulin binding columns (HiTrap Protein G). The purification process was monitored by 1D SDS-PAGE, protein staining, Western blotting and, finally, liquid chromatography tandem mass spectrometry (LC MS/MS) was used to identify the recovered antigens. This approach was applied to serum with artificially created immune complexes (ICs) comprising vaccine antigen (influenza) and antibody, which led to recovery and identification of influenza peptides within the recovered ICs. This approach was compared with the established method for IC detection and recovery, polyethylene glycol (PEG) precipitation, followed by LC MS/MS. Both approaches successfully enabled capture, recovery and characterization of immunoglobulins and influenza antigen(s) in complex with the immunoglobulins. However, PEG precipitation has the advantage of simplicity and is more suited for large scale studies.

Journal article

Menikou S, Langford P, Levin M, 2019, Kawasaki disease: the role of immune complexes revisited, Frontiers in Immunology, Vol: 10, ISSN: 1664-3224

Kawasaki disease (KD) is an inflammatory disease in children associated with vasculitis affecting predominantly the coronary arteries and is now the most common cause of acquired heart disease in children in developed countries. The etiology of KD is unknown but epidemiological studies implicate an infectious agent or toxin, which causes disease in genetically predisposed individuals. The presence of immune complexes (ICs) in the serum of children with KD was established in numerous studies during the 1970s and 80s. More recent genetic studies have identified variation in Fcγ receptors and genes controlling immunoglobulin production associated with KD. In this review we link the genetic findings and IC studies and suggest a key role for their interaction in pathophysiology of the disease.

Journal article

Borghini L, Png E, Binder A, Wright VJ, Pinnock E, de Groot R, Hazelzet J, Emonts M, Van der Flier M, Schlapbach LJ, Anderson S, Secka F, Salas A, Fink C, Carrol ED, Pollard AJ, Coin LJ, Kuijpers TW, Martinon-Torres F, Zenz W, Levin M, Hibberd ML, Davila S, Gormley S, Hamilton S, Herberg J, Hourmat B, Hoggart C, Kaforou M, Sancho-Shimizu V, Abdulla A, Agapow P, Bartlett M, Bellos E, Eleftherohorinou H, Galassini R, Inwald D, Mashbat M, Menikou S, Mustafa S, Nadel S, Rahman R, Thakker C, Bokhandi S, Power S, Barham H, Pathan N, Ridout J, White D, Thurston S, Faust S, Patel S, McCorkell J, Davies P, Cratev L, Navarra H, Carter S, Ramaiah R, Patel R, Tuffrey C, Gribbin A, McCready S, Peters M, Hardy K, Standing F, O'Neill L, Abelake E, Deep A, Nsirim E, Willis L, Young Z, Royad C, White S, Fortune PM, Hudnott P, Alvez Gonzalez F, Barral-Arca R, Cebey-Lopez M, Jose Curras-Tuala M, Garcia N, Garcia Vicente L, Gomez-Carballa A, Gomez Rial J, Grela Beiroa A, Justicia Grande A, Leborans Iglesias P, Martinez Santos AE, Martinon-Torres N, Martinon Sanchez JM, Mosquera Perez B, Obando Pacheco P, Pardo-Seco J, Pischedda S, Rivero Calle I, Rodriguez-Tenreiro C, Redondo-Collazo L, Seren Fernandez S, Porto Silva MDS, Vega A, Beatriz Reyes S, Leon Leon MC, Navarro Mingorance A, Gabaldo Barrios X, Onate Vergara E, Concha Torre A, Vivanco A, Fernandez R, Gimenez Sanchez F, Sanchez Forte M, Rojo P, Ruiz Contreras J, Palacios A, Navarro M, Alvarez Alvarez C, Jose Lozano M, Carreras E, Brio Sanagustin S, Neth O, Martinez Padilla MDC, Prieto Tato LM, Guillen S, Fernandez Silveira L, Moreno D, van Furth AMT, van der Flier M, Boeddha NP, Driessen GJA, Pajkrt D, Sanders EAM, van de Beek D, van der Ende A, Philipsen HLA, Adeel AOA, Breukels MA, Brinkman DMC, de Korte CCMM, de Vries E, de Waal WJ, Dekkers R, Dings-Lammertink A, Doedens RA, Donker AE, Dousma M, Faber TE, Gerrits GPJM, Gerver JAM, Heidema J, Homan-van der Veen J, Jacobs MAM, Jansen NJG, Kawczynski P, Klucovska K, Kneyber MCJ Ket al., 2019, Identification of regulatory variants associated with genetic susceptibility to meningococcal disease, Scientific Reports, Vol: 9, ISSN: 2045-2322

Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA – a NF-kB subunit, master regulator of the response to infection – under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes.

Journal article

Menikou S, McArdle A, Kaforou M, Shimizu C, Wright VJ, Herberg JA, Kanegaye JT, Tremoulet A, Burns JC, Levin Met al., 2019, Characterisation of immune complexes in Kawasaki Disease and other infectious diseases by protein sequencing, 103rd Annual Meeting of the American-Association-of-Immunologists, Publisher: AMER ASSOC IMMUNOLOGISTS, ISSN: 0022-1767

Conference paper

Wright V, Herberg J, Kaforou M, Shimizu C, Eleftherohorinou H, Shailes H, Barendregt A, Menikou S, Gormley S, Berk M, Hoang L, Tremoulet A, Kanegaye J, Coin L, Glode M, Hibberd M, Kuijpers T, Hoggart C, Burns J, Levin Met al., 2018, Diagnosis of Kawasaki disease using a minimal whole blood gene expression signature, JAMA Pediatrics, Vol: 172, Pages: 1-10, ISSN: 2168-6203

Importance There is no diagnostic test for Kawasaki disease (KD). Diagnosis is based on clinical features shared with other febrile conditions, frequently resulting in delayed or missed treatment and an increased risk of coronary artery aneurysms. Objective To identify a whole blood gene expression signature that distinguishes children with KD in the first week of illness from other febrile conditions.Design Case-control discovery study groups comprising training, test, and validation groups of children with KD or comparator febrile illness. Setting Hospitals in the UK, Spain, Netherlands and USA.Participants The training and test discovery group comprised 404 children with infectious and inflammatory conditions (78 KD, 84 other inflammatory diseases, 242 bacterial or viral infections) and 55 healthy controls. The independent validation group included 130 febrile children and 102 KD patients, including 72 in the first 7 days of illness.Exposures Whole blood gene expression was evaluated using microarrays, and minimal transcript sets distinguishing KD were identified using a novel variable selection method (Parallel Deterministic Model Search).Main outcomes and measures The ability of transcript signatures - implemented as Disease Risk Scores - to discriminate KD cases from controls, was assessed by Area Under the Curve (AUC), sensitivity, and specificity at the optimal cut-point according to Youden’s index. Results A 13-transcript signature identified in the discovery training set distinguished KD from other infectious and inflammatory conditions in the discovery test set with AUC, sensitivity, and specificity (95% confidence intervals (CI)) of 96.2% (92.5-99.9), 81.7% (60.0-94.8), and 92.1% (84.0-97.0), respectively. In the validation set, the signature distinguished KD from febrile controls with AUC, sensitivity, and specificity (95% CI) of 94.6% (91.3-98.0), 85.9% (76.8-92.6), and 89.1% (83.0-93.7) respectively. The signature was applied to clinically defin

Journal article

Menikou S, Sancho-Shimizu V, Levin Z, Hamilton SM, Langford P, Levin Met al., 2015, Identification of the agent causing Kawasaki Disease via throat swab cultures, 11th International Kawasaki Disease Symposium (IKDS), Publisher: LIPPINCOTT WILLIAMS & WILKINS, ISSN: 0009-7322

Conference paper

Menikou S, Patel MP, Rose KL, Botto M, Warner JO, Pickering MC, Boyle RJet al., 2012, Relationship between complotype and severity of reported systemic allergic reactions to peanut, Journal of Allergy and Clinical Immunology, Vol: 129, Pages: 1398-1401

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00629342&limit=30&person=true