Publications
68 results found
Lepore A, Choy PM, Lee NC, et al., 2021, Phosphorylation and stabilization of PIN1 by JNK promote intrahepatic cholangiocarcinoma growth, Hepatology, Vol: 74, Pages: 2561-2579, ISSN: 0270-9139
BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive type of liver cancer in urgent need of treatment options. Aberrant activation of c-Jun N-terminal kinase (JNK) pathway is a key feature in ICC and an attractive candidate target for its treatment. However, the mechanisms by which constitutive JNK activation promotes ICC growth, and thus the key downstream effectors of this pathway remain unknown for their applicability as therapeutic targets. Our aim was to obtain a better mechanistic understanding of the role of JNK signalling in ICC that could open new therapeutic opportunities. APPROACH AND RESULTS: Using loss- and gain-of-function studies in vitro and in vivo, we show that activation of the JNK pathway promotes ICC cell proliferation by affecting the protein stability of Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), a key driver of tumorigenesis. PIN1 is highly expressed in ICC primary tumours, and its expression positively correlates with active JNK. Mechanistically, the JNK kinases directly bind to and phosphorylate PIN1 at Ser115, and this phosphorylation prevents PIN1 mono-ubiquitination at Lys117 and its proteasomal degradation. Moreover, pharmacological inhibition of PIN1 via all-trans retinoic acid (ATRA), an FDA-approved drug, impairs the growth of both cultured and xenografted ICC cells. CONCLUSIONS: Our findings implicate the JNK-PIN1 regulatory axis as a functionally important determinant for ICC growth, and provide a rationale for therapeutic targeting of JNK activation via PIN1 inhibition.
Papa S, Bubici C, Syn W-K, 2021, STARD1: a new rising StAR in cholesterol-mediated hepatocarcinogenesis, Hepatobiliary Surgery and Nutrition, Vol: 10, ISSN: 2304-3881
Arif E, Wang C, Swiderska-Syn MK, et al., 2021, Targeting myosin 1c inhibits murine hepatic fibrogenesis, American Journal of Physiology: Gastrointestinal and Liver Physiology, Vol: 320, Pages: G1044-G105, ISSN: 0193-1857
Myosin 1c (Myo1c) is an unconventional myosin that modulates signaling pathways involved in tissue injury and repair. In this study, we observed that Myo1c expression is significantly upregulated in human chronic liver disease such as nonalcoholic steatohepatitis (NASH) and in animal models of liver fibrosis. High throughput data from the GEO-database identified similar Myo1c upregulation in mice and human liver fibrosis. Notably, TGF-β stimulation to hepatic stellate cells (HSCs, the liver pericyte and key cell type responsible for the deposition of extracellular matrix upregulates Myo1c expression, while genetic depletion or pharmacological inhibition of Myo1c blunted TGF-β induced fibrogenic responses, resulting in repression of α-SMA and Col1α1 mRNA. Myo1c deletion also decreased fibrogenic processes such as cell proliferation, wound healing response and contractility when compared with vehicle treated HSCs. Importantly, phosphorylation of SMAD2 and SMAD3 were significantly blunted upon Myo1c inhibition in GRX cells as well as Myo1c-KO MEFs upon TGF-β stimulation. Using the genetic Myo1c knockout (Myo1c-KO) mice, we confirmed that Myo1c is critical for fibrogenesis as Myo1c-KO mice were resistant to CCl4 induced liver fibrosis. Histological and immunostaining analysis of liver sections showed that deposition of collagen fibers and α-SMA expression were significantly reduced in Myo1c-KO mice upon liver injury. Collectively, these results demonstrate that Myo1c-mediates hepatic fibrogenesis by modulating TGF-β signaling and suggest that inhibiting this process may have clinical application in treating liver fibrosis.
Flati V, Corsetti G, Papa S, 2021, Editorial: the dynamic interplay between nutrition, autophagy and cell metabolism, Frontiers in Cell and Developmental Biology, Vol: 9, Pages: 1-3, ISSN: 2296-634X
Bubici C, Lepore A, Papa S, 2019, ASKing no more: the emerging role of DUSP12 in the regulation of hepatic lipid metabolism, Hepatology, Vol: 70, Pages: 1091-1094, ISSN: 0270-9139
Accumulation of fat in liver cells not due to alcohol abuse is the hallmark of non-alcoholic fatty liver disease (NAFLD), a common condition that may progress to non-alcoholic steatohepatitis (NASH) characterized by liver inflammation.(1) Over a long period of time, NASH may lead to fibrosis with consequent cirrhosis, which in turn predisposes patients to hepatocellular carcinoma.
Bubici C, Papa S, 2019, Editorial: The warburg effect regulation under siege: the intertwined pathways in health and disease, Frontiers in Cell and Developmental Biology, Vol: 7, ISSN: 2296-634X
Papa S, Choy PM, Bubici C, 2019, The ERK and JNK pathways in the regulation of metabolic reprogramming, Oncogene, Vol: 38, Pages: 2223-2240, ISSN: 0950-9232
Most tumor cells reprogram their glucose metabolism as a result of mutations in oncogenes and tumor suppressors, leading to the constitutive activation of signaling pathways involved in cell growth. This metabolic reprogramming, known as aerobic glycolysis or the Warburg effect, allows tumor cells to sustain their fast proliferation and evade apoptosis. Interfering with oncogenic signaling pathways that regulate the Warburg effect in cancer cells has therefore become an attractive anticancer strategy. However, evidence for the occurrence of the Warburg effect in physiological processes has also been documented. As such, close consideration of which signaling pathways are beneficial targets and the effect of their inhibition on physiological processes are essential. The MAPK/ERK and MAPK/JNK pathways, crucial for normal cellular responses to extracellular stimuli, have recently emerged as key regulators of the Warburg effect during tumorigenesis and normal cellular functions. In this review, we summarize our current understanding of the roles of the ERK and JNK pathways in controlling the Warburg effect in cancer and discuss their implication in controlling this metabolic reprogramming in physiological processes and opportunities for targeting their downstream effectors for therapeutic purposes.
Papa S, Lee NC, Bubici C, 2018, Deciphering preventive and prognostic biomarkers of liver cancer, NCRI Cancer Conference 2018, Publisher: National Cancer Research Institute
Lee NCW, Carella MA, Papa S, et al., 2018, High expression of glycolytic genes in cirrhosis correlates with the risk of developing liver cancer, Frontiers in Cell and Developmental Biology, Vol: 6, ISSN: 2296-634X
A marked increase in the rate of glycolysis is a key event in the pathogenesis of hepatocellular carcinoma (HCC), the main type of primary liver cancer. Liver cirrhosis is considered to be a key player in HCC pathogenesis as it precedes HCC in up to 90% of patients. Intriguingly, the biochemical events that underlie the progression of cirrhosis to HCC are not well understood. In this study, we examined the expression profile of metabolic gene transcripts in liver samples from patients with HCC and patients with cirrhosis. We found that gene expression of glycolytic enzymes is up-regulated in precancerous cirrhotic livers and significantly associated with an elevated risk for developing HCC. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in HCC compared to normal livers but remain unchanged in cirrhosis. Our findings suggest that key glycolytic enzymes such as hexokinase 2 (HK2), aldolase A (ALDOA), and pyruvate kinase M2 (PKM2) may represent potential markers and molecular targets for early detection and chemoprevention of HCC.
Papa S, Bubici C, 2018, Feeding the hedgehog: a new meaning for JNK signalling in liver regeneration, Journal of Hepatology, Vol: 69, Pages: 572-574, ISSN: 0168-8278
Manka P, Coombes JD, Boosman R, et al., 2018, Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment, Cancer Letters, Vol: 419, Pages: 175-186, ISSN: 0304-3835
Hepatocellular carcinoma (HCC) commonly arises from a liver damaged by extensive inflammation and fibrosis. Various factors including cytokines, morphogens, and growth factors are involved in the crosstalk between HCC cells and the stromal microenvironment. Increasing our understanding of how stromal components interact with HCC and the signaling pathways involved could help identify new therapeutic and/or chemopreventive targets. It has become increasingly clear that the cross-talk between tumor cells and host stroma plays a key role in modulating tumor growth. Emerging reports suggest a relationship between HCC and thyroid hormone signaling (dysfunction), raising the possibility that perturbed thyroid hormone (TH) regulation influences the cancer microenvironment and cancer phenotype. This review provides an overview of the role of thyroid hormone and its related pathways in HCC and, specifically, its role in regulating the tumor microenvironment.
Verzella D, Bennett J, Fischietti M, et al., 2018, GADD45β loss ablates innate immunosuppression in cancer, Cancer Research, Vol: 78, Pages: 1275-1292, ISSN: 1538-7445
T cell exclusion from the tumour microenvironment (TME) is a major barrier to overcoming immune escape. Here we identify a myeloid-intrinsic mechanism governed by the NF-κB effector molecule GADD45β that restricts tumour-associated inflammation and T cell trafficking into tumours. In various models of solid cancers refractory to immunotherapies, including hepatocellular carcinoma (HCC) and ovarian adenocarcinoma, Gadd45b inhibition in myeloid cells restored activation of pro-inflammatory tumour-associated macrophages (TAM) and intratumoural immune infiltration, thereby diminishing oncogenesis. Our results provide a basis to interpret clinical evidence that elevated expression of GADD45B confers poor clinical outcomes in most human cancers. Further, they suggest a therapeutic target in GADD45β for re-programming TAM to overcome immunosuppression and T cell exclusion from the TME.
Briones MA, Coombes JD, Mellone M, et al., 2016, The role of osteopontin isoforms in cholangiocarcinoma, 67th Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD), Publisher: WILEY, Pages: 235A-235A, ISSN: 0270-9139
, 2016, Poster Session I (Abstracts 259 – 729), Hepatology, Vol: 64, Pages: 136-361, ISSN: 0270-9139
Papa S, Bubici C, 2016, Linking apoptosis to cancer metabolism: Another missing piece of JuNK, Molecular & Cellular Oncology, Vol: 3, ISSN: 2372-3556
Cancer cells become dependent on aerobic glycolysis to sustain rapid proliferation and escape apoptosis. How this metabolic change, also known as the Warburg effect, is linked to apoptosis remains largely unknown. Our new data place c-Jun N-terminal kinase in the center of a hub regulating apoptosis and cancer metabolism.
Briones-Orta MA, Coombes JD, Mellone M, et al., 2015, Osteopontin-c isoform promotes a mesenchymal phenotype in human cholangiocarcinoma cells, 66th Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases (AASLD), Publisher: WILEY-BLACKWELL, Pages: 1171A-1171A, ISSN: 0270-9139
, 2015, Poster Session 4: Experimental Hepatocarcinogenesis; Hepatitis B: Treatment, Hepatology, Vol: 62, Pages: 1151A-1181A, ISSN: 0270-9139
Papa S, Bubici C, 2015, Starving cancer cells of sugar could be the key to future treatment
Iansante V, Choy PM, Fung SW, et al., 2015, PARP14 promotes the Warburg effect in hepatocellular carcinoma by inhibiting JNK1-dependent PKM2 phosphorylation and activation, Nature Communications, Vol: 6, ISSN: 2041-1723
Most tumour cells use aerobic glycolysis (the Warburg effect) to support anabolic growth and evade apoptosis. Intriguingly, the molecular mechanisms that link the Warburg effect with the suppression of apoptosis are not well understood. In this study, using loss-of-function studies in vitro and in vivo, we show that the anti-apoptotic protein poly(ADP-ribose) polymerase (PARP)14 promotes aerobic glycolysis in human hepatocellular carcinoma (HCC) by maintaining low activity of the pyruvate kinase M2 isoform (PKM2), a key regulator of the Warburg effect. Notably, PARP14 is highly expressed in HCC primary tumours and associated with poor patient prognosis. Mechanistically, PARP14 inhibits the pro-apoptotic kinase JNK1, which results in the activation of PKM2 through phosphorylation of Thr365. Moreover, targeting PARP14 enhances the sensitization of HCC cells to anti-HCC agents. Our findings indicate that the PARP14-JNK1-PKM2 regulatory axis is an important determinant for the Warburg effect in tumour cells and provide a mechanistic link between apoptosis and metabolism.
Iansante V, Choy PM, Chokshi S, et al., 2015, Addressing the interplay between apoptosis and glucose metabolism in liver cirrhosis and HCC, Digestives Disorders Federation
Choy PM, Sufi J, Glaser S, et al., 2015, INHIBITION OF MAPK SIGNALLING PROMOTES CELL CYCLE ARREST AND SENSITISES INTRAHEPATIC CHOLANGIOCARCINOMA CELLS TO CHEMOTHERAPY, 2nd Digestive-Disorders-Federation Conference, Publisher: BMJ PUBLISHING GROUP, Pages: A458-A458, ISSN: 0017-5749
Iansante V, Choy PM, Chokshi S, et al., 2015, INCREASED AEROBIC GLYCOLYSIS IS ASSOCIATED WITH POOR OUTCOME AND SUPPRESSION OF APOPTOSIS IN HUMAN LIVER CIRRHOSIS AND HCC, 50th International Liver Congress of the European-Association-for-the-Study-of-the-Liver, Publisher: ELSEVIER SCIENCE BV, Pages: S427-S427, ISSN: 0168-8278
- Author Web Link
- Cite
- Citations: 1
Coombes JD, Swiderska-Syn M, Dollé L, et al., 2015, Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice, Gut, Vol: 64, Pages: 1120-1131
Iansante V, Choy PM, Fung SW, et al., 2014, UPREGULATION OF A NOVEL PROTEIN IN HCC ENHANCES CANCER CELL SURVIVAL BY SUPPRESSING SPECIFIC APOPTOTIC EFFECTORS, 49th Annual International Liver Congress of the European-Association-for-the-Study-of-the-Liver, Publisher: ELSEVIER SCIENCE BV, Pages: S89-S89, ISSN: 0168-8278
Bubici C, Papa S, 2014, JNK signalling in cancer: in need of new, smarter therapeutic targets, BRITISH JOURNAL OF PHARMACOLOGY, Vol: 171, Pages: 24-37, ISSN: 0007-1188
- Author Web Link
- Cite
- Citations: 240
Briones-Orta MA, Coombes JD, Kitamura N, et al., 2014, Osteopontin isoforms are upregulated in human cholangiocarcinoma cells and modulate levels of the TGF-beta repressor, SnoN, 65th Annual Meeting of the American-Association-for-the-Study-of-Liver-Diseases, Publisher: WILEY-BLACKWELL, Pages: 818A-818A, ISSN: 0270-9139
Wang Z, Hou J, Lu L, et al., 2013, Small Ribosomal Protein Subunit S7 Suppresses Ovarian Tumorigenesis through Regulation of the PI3K/AKT and MAPK Pathways, PLOS ONE, Vol: 8, ISSN: 1932-6203
- Author Web Link
- Cite
- Citations: 42
Coombes J, Claridge LC, Swiderska-Syn M, et al., 2013, Osteopontin enhances liver progenitor cell responses in progressive Nonalcoholic Steatohepatitis, 64th Annual Meeting and Postgraduate Course of the American-Association-for-the-Study-of-Liver-Diseases, Publisher: WILEY-BLACKWELL, Pages: 535A-535A, ISSN: 0270-9139
Barbarulo A, Iansante V, Chaidos A, et al., 2013, Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma, Oncogene, Vol: 32, Pages: 4231-4242, ISSN: 0950-9232
Regulation of cell survival is a key part of the pathogenesis of multiple myeloma (MM). Jun N-terminal kinase (JNK) signaling has been implicated in MM pathogenesis, but its function is unclear. To elucidate the role of JNK in MM, we evaluated the specific functions of the two major JNK proteins, JNK1 and JNK2. We show here that JNK2 is constitutively activated in a panel of MM cell lines and primary tumors. Using loss-of-function studies, we demonstrate that JNK2 is required for the survival of myeloma cells and constitutively suppresses JNK1-mediated apoptosis by affecting expression of poly(ADP-ribose) polymerase (PARP)14, a key regulator of B-cell survival. Strikingly, we found that PARP14 is highly expressed in myeloma plasma cells and associated with disease progression and poor survival. Overexpression of PARP14 completely rescued myeloma cells from apoptosis induced by JNK2 knockdown, indicating that PARP14 is critically involved in JNK2-dependent survival. Mechanistically, PARP14 was found to promote the survival of myeloma cells by binding and inhibiting JNK1. Moreover, inhibition of PARP14 enhances the sensitization of MM cells to anti-myeloma agents. Our findings reveal a novel regulatory pathway in myeloma cells through which JNK2 signals cell survival via PARP14, and identify PARP14 as a potential therapeutic target in myeloma.
Iansante V, Zen Y, Barbarulo A, et al., 2012, MAPK SIGNALLING REGULATES THE DEVELOPMENT OF A CHOLANGIOCELLULAR PHENOTYPE FROM HCC IN POST-TACE LIVER TRANSPLANTS, 1st Combined Digestive Disorders Federation Meeting of the British-Society-of-Gastroenterology (BSG), Association-of-Upper-Gastrointestinal-Surgeons (AUGIS), BAPEN and British-Association-for-the-Study-of-the-Liver (BASL), Publisher: BMJ PUBLISHING GROUP, Pages: A416-A416, ISSN: 0017-5749
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.