Imperial College London


Faculty of MedicineDepartment of Brain Sciences

Research Fellow



s.sadeh Website




515Burlington DanesHammersmith Campus





Publication Type

10 results found

Sadeh S, Clopath C, 2022, Contribution of behavioural variability to representational drift, eLife, Vol: 11, Pages: 1-28, ISSN: 2050-084X

Neuronal responses to similar stimuli change dynamically over time, raising the question of how internal representations can provide a stable substrate for neural coding. Recent work has suggested a large degree of drift in neural representations even in sensory cortices, which are believed to store stable representations of the external world. While the drift of these representations is mostly characterized in relation to external stimuli, the behavioural state of the animal (for instance, the level of arousal) is also known to strongly modulate the neural activity. We therefore asked how the variability of such modulatory mechanisms can contribute to representational changes. We analysed large-scale recording of neural activity from the Allen Brain Observatory, which was used before to document representational drift in the mouse visual cortex. We found that, within these datasets, behavioural variability significantly contributes to representational changes. This effect was broadcasted across various cortical areas in the mouse, including the primary visual cortex, higher order visual areas, and even regions not primarily linked to vision like hippocampus. Our computational modelling suggests that these results are consistent with independent modulation of neural activity by behaviour over slower time scales. Importantly, our analysis suggests that reliable but variable modulation of neural representations by behaviour can be misinterpreted as representational drift, if neuronal representations are only characterized in the stimulus space and marginalised over behavioural parameters.

Journal article

Feitosa Tome D, Sadeh S, Clopath C, 2022, Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation, Nature Communications, Vol: 13, ISSN: 2041-1723

Systems consolidation refers to the time-dependent reorganization of memory representations or engrams across brain regions. Despite recent advancements in unravelling this process, the exact mechanisms behind engram dynamics and the role of associated pathways remain largely unknown. Here we propose a biologically-plausible computational model to address this knowledge gap. By coordinating synaptic plasticity timescales and incorporating a hippocampus-thalamus-cortex circuit, our model is able to couple engram reactivations across these regions and thereby reproduce key dynamics of cortical and hippocampal engram cells along with their interdependencies. Decoupling hippocampal-thalamic-cortical activity disrupts systems consolidation. Critically, our model yields testable predictions regarding hippocampal and thalamic engram cells, inhibitory engrams, thalamic inhibitory input, and the effect of thalamocortical synaptic coupling on retrograde amnesia induced by hippocampal lesions. Overall, our results suggest that systems consolidation emerges from coupled reactivations of engram cells in distributed brain regions enabled by coordinated synaptic plasticity timescales in multisynaptic subcortical-cortical circuits.

Journal article

Geiller T, Sadeh S, Clopath C, Losonczy Aet al., 2021, Local circuit amplification of spatial selectivity in the hippocampus, Nature, Vol: 601, Pages: 105-109, ISSN: 0028-0836

Local circuit architecture facilitates the emergence of feature selectivity in the cerebral cortex1. In the hippocampus, it remains unknown whether local computations supported by specific connectivity motifs2 regulate the spatial receptive fields of pyramidal cells3. Here we developed an in vivo electroporation method for monosynaptic retrograde tracing4 and optogenetics manipulation at single-cell resolution to interrogate the dynamic interaction of place cells with their microcircuitry during navigation. We found a local circuit mechanism in CA1 whereby the spatial tuning of an individual place cell can propagate to a functionally recurrent subnetwork5 to which it belongs. The emergence of place fields in individual neurons led to the development of inverse selectivity in a subset of their presynaptic interneurons, and recruited functionally coupled place cells at that location. Thus, the spatial selectivity of single CA1 neurons is amplified through local circuit plasticity to enable effective multi-neuronal representations that can flexibly scale environmental features locally without degrading the feedforward input structure.

Journal article

Sadeh S, Clopath C, 2021, Excitatory-inhibitory balance modulates the formation and dynamics of neuronal assemblies in cortical networks, Science Advances, Vol: 7, Pages: 1-16, ISSN: 2375-2548

Repetitive activation of subpopulations of neurons leads to the formation of neuronal assemblies, which can guide learning and behavior. Recent technological advances have made the artificial induction of such assemblies feasible, yet how various parameters of perturbation can be optimized for such induction is not clear. We found that the regime of cortical networks in terms of their excitatory-inhibitory balance can modulate the formation and dynamics of assemblies. Networks with dominant excitatory interactions enabled a fast formation of assemblies, and this was accompanied by recruitment of other non-perturbed neurons, thus leading to some degree of nonspecific assembly formation. On the other hand, strong excitatory-inhibitory interaction recruited lateral inhibition, which slowed down the formation of assemblies but constrained them to the perturbed neurons. Our results suggest that these two regimes can be suitable for different computational and cognitive tasks with different trade-offs between speed and specificity. More generally, our work provides a framework to study network-wide behaviorally-relevant plasticity in biologically realistic networks.

Journal article

Sadeh S, Clopath C, 2020, Inhibitory stabilization and cortical computation, Nature Reviews Neuroscience, ISSN: 1471-003X

Journal article

Sadeh S, Clopath C, 2020, Theory of neuronal perturbome in cortical networks., Proceedings of the National Academy of Sciences of USA, Vol: 117, Pages: 26966-26976, ISSN: 0027-8424

To unravel the functional properties of the brain, we need to untangle how neurons interact with each other and coordinate in large-scale recurrent networks. One way to address this question is to measure the functional influence of individual neurons on each other by perturbing them in vivo. Application of such single-neuron perturbations in mouse visual cortex has recently revealed feature-specific suppression between excitatory neurons, despite the presence of highly specific excitatory connectivity, which was deemed to underlie feature-specific amplification. Here, we studied which connectivity profiles are consistent with these seemingly contradictory observations, by modeling the effect of single-neuron perturbations in large-scale neuronal networks. Our numerical simulations and mathematical analysis revealed that, contrary to the prima facie assumption, neither inhibition dominance nor broad inhibition alone were sufficient to explain the experimental findings; instead, strong and functionally specific excitatory-inhibitory connectivity was necessary, consistent with recent findings in the primary visual cortex of rodents. Such networks had a higher capacity to encode and decode natural images, and this was accompanied by the emergence of response gain nonlinearities at the population level. Our study provides a general computational framework to investigate how single-neuron perturbations are linked to cortical connectivity and sensory coding and paves the road to map the perturbome of neuronal networks in future studies.

Journal article

Sadeh S, Clopath C, 2020, Patterned perturbation of inhibition can reveal the dynamical structure of neural processing, eLife, Vol: 9, ISSN: 2050-084X

Perturbation of neuronal activity is key to understanding the brain's functional properties, however, intervention studies typically perturb neurons in a nonspecific manner. Recent optogenetics techniques have enabled patterned perturbations, in which specific patterns of activity can be invoked in identified target neurons to reveal more specific cortical function. Here, we argue that patterned perturbation of neurons is in fact necessary to reveal the specific dynamics of inhibitory stabilization, emerging in cortical networks with strong excitatory and inhibitory functional subnetworks, as recently reported in mouse visual cortex. We propose a specific perturbative signature of these networks and investigate how this can be measured under different experimental conditions. Functionally, rapid spontaneous transitions between selective ensembles of neurons emerge in such networks, consistent with experimental results. Our study outlines the dynamical and functional properties of feature-specific inhibitory-stabilized networks, and suggests experimental protocols that can be used to detect them in the intact cortex.

Journal article

Sadeh S, Clopath C, Rotter S, 2015, Processing of Feature Selectivity in Cortical Networks with Specific Connectivity (vol 10, e0127547, 2015), PLOS ONE, Vol: 10, ISSN: 1932-6203

Journal article

Sadeh S, Clopath C, Rotter S, 2015, Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity, PLOS Computational Biology, Vol: 11, ISSN: 1553-734X

In rodent visual cortex, synaptic connections between orientation-selective neurons are unspecific at the time of eye opening, and become to some degree functionally specific only later during development. An explanation for this two-stage process was proposed in terms of Hebbian plasticity based on visual experience that would eventually enhance connections between neurons with similar response features. For this to work, however, two conditions must be satisfied: First, orientation selective neuronal responses must exist before specific recurrent synaptic connections can be established. Second, Hebbian learning must be compatible with the recurrent network dynamics contributing to orientation selectivity, and the resulting specific connectivity must remain stable for unspecific background activity. Previous studies have mainly focused on very simple models, where the receptive fields of neurons were essentially determined by feedforward mechanisms, and where the recurrent network was small, lacking the complex recurrent dynamics of large-scale networks of excitatory and inhibitory neurons. Here we studied the emergence of functionally specific connectivity in large-scale recurrent networks with synaptic plasticity. Our results show that balanced random networks, which already exhibit highly selective responses at eye opening, can develop feature-specific connectivity if appropriate rules of synaptic plasticity are invoked within and between excitatory and inhibitory populations. If these conditions are met, the initial orientation selectivity guides the process of Hebbian learning and, as a result, functionally specific and a surplus of bidirectional connections emerge. Our results thus demonstrate the cooperation of synaptic plasticity and recurrent dynamics in large-scale functional networks with realistic receptive fields, highlight the role of inhibition as a critical element in this process, and paves the road for further computational studies of sensory proc

Journal article

Sadeh S, Clopath C, Rotter S, 2015, Processing of Feature Selectivity in Cortical Networks with Specific Connectivity, PLOS One, Vol: 10, ISSN: 1932-6203

Although non-specific at the onset of eye opening, networks in rodent visual cortex attain a non-random structure after eye opening, with a specific bias for connections between neurons of similar preferred orientations. As orientation selectivity is already present at eye opening, it remains unclear how this specificity in network wiring contributes to feature selectivity. Using large-scale inhibition-dominated spiking networks as a model, we show that feature-specific connectivity leads to a linear amplification of feedforward tuning, consistent with recent electrophysiological single-neuron recordings in rodent neocortex. Our results show that optimal amplification is achieved at an intermediate regime of specific connectivity. In this configuration a moderate increase of pairwise correlations is observed, consistent with recent experimental findings. Furthermore, we observed that feature-specific connectivity leads to the emergence of orientation-selective reverberating activity, and entails pattern completion in network responses. Our theoretical analysis provides a mechanistic understanding of subnetworks’ responses to visual stimuli, and casts light on the regime of operation of sensory cortices in the presence of specific connectivity.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01012407&limit=30&person=true