Imperial College London

DrSusanneSattler

Faculty of MedicineNational Heart & Lung Institute

Advanced Research Fellow
 
 
 
//

Contact

 

+44 (0)20 7594 2737s.sattler

 
 
//

Location

 

424W2ICTEM buildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

45 results found

Kouame E, Noel JC, Wane M, Babdor J, Caslin HL, Fan A, Mbiribindi B, Sattler S, Mobley ASet al., 2021, Black in Immuno Week: Who We Are, What We Did, and Why It Matters., J Immunol, Vol: 207, Pages: 1941-1947

Our organization, Black in Immuno (@BlackInImmuno), was formed in September 2020 to celebrate, support, and amplify Black voices in immunology when social media campaigns like #BlackInTheIvory illuminated the shared overt and covert issues of systemic racism faced by Black researchers in all facets of science, technology, engineering, art, and mathematics. Black in Immuno was cofounded by a group of Black immunology trainees working at multiple institutions globally: Joël Babdor, E. Evonne Jean, Elaine Kouame, Alexis S. Mobley, Justine C. Noel, and Madina Wane. We devised Black in Immuno Week, held November 22-28, 2020, as a global celebration of Black immunologists. The week was designed to advocate for increased diversity and accessibility in immunology, amplify Black excellence in immunology, and create a community of Black immunologists who can support each other to flourish despite barriers in academia and other job sectors. The week contained live panels and scientific talks, a casual networking mixer, online advocacy and amplification sessions, and a series of wellness events. Our live-streamed programs reached over 300 individuals, and thousands of people kept the conversations going globally using #BlackInImmuno and #BlackInImmunoWeek on social media from five continents. Below, we highlight the events and significant takeaways of the week.

Journal article

Sattler S, 2021, Single-cell immunology in cardiovascular medicine: do we know yet what we do not know?, Circulation, Vol: 144, Pages: 843-844, ISSN: 0009-7322

Journal article

Forte E, Panahi M, Baxan N, Ng FS, Boyle JJ, Branca J, Bedard O, Hasham MG, Benson L, Harding SE, Rosenthal N, Sattler Set al., 2021, Type 2 MI induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart, Journal of Cellular and Molecular Medicine, Vol: 25, Pages: 229-243, ISSN: 1582-1838

Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol hydrochloride is used for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis. To assess whether isoproterenol-induced cardiomyocyte necrosis triggers an adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches.

Journal article

Forte E, Perkins B, Sintou A, Kallkat HS, Papanikolaou A, Jenkins C, Alsubaie M, Chowdhury RA, Duffy TM, Skelly DA, Branca J, Bellahcene M, Schneider M, Harding S, Furtado MB, Ng FS, Hasham MG, Rosenthal N, Sattler Set al., 2020, Cross-priming dendritic cells exacerbate immunopathology after ischemic tissue damage in the heart, Circulation, Vol: 143, Pages: 821-836, ISSN: 0009-7322

Background: Ischemic heart disease is a leading cause of heart failure and despite advanced therapeutic options, morbidity and mortality rates remain high. Although acute inflammation in response to myocardial cell death has been extensively studied, subsequent adaptive immune activity and anti-heart autoimmunity may also contribute to the development of HF. After ischemic injury to the myocardium, dendritic cells (DC) respond to cardiomyocyte necrosis, present cardiac antigen to T cells and potentially initiate a persistent autoimmune response against the heart. Cross-priming DC have the ability to activate both CD4+ helperand CD8+ cytotoxic T cells in response to necrotic cells and may thus be crucial players in exacerbating autoimmunity targeting the heart. This study investigates a role for cross priming DC in post-MI myocardial impairment through presentation of self-antigen fromnecrotic cardiomyocytes to cytotoxic CD8+ T cells.Methods: We induced type-2 myocardial infarction (MI)-like ischemic injury in the heart by treatment with a single high dose of the beta-adrenergic agonist isoproterenol. We characterized the DC population in the heart and mediastinal lymph nodes and analyzed long term cardiac immunopathology and functional decline in wild type and Clec9a-depleted mice lacking DC cross-priming function.Results: A diverse DC population, including cross-priming DC, is present in the heart and activated after ischemic injury. Clec9a -/- mice deficient in DC cross-priming are protected from long-term immune-mediated myocardial damage and decline of cardiac function, likely dueto dampened activation of cytotoxic CD8+ T cells.Conclusion: Activation of cytotoxic CD8+ T cells by cross-priming DC contributes to exacerbation of post-ischemic inflammatory damage of the myocardium and corresponding decline in cardiac function. Importantly, this provides novel therapeutic targets to prevent immune-mediated worsening of post-ischemic HF.

Journal article

J C, Najer A, Blakney A, McKay P, Bellahcene M, Winter C, Sintou A, Tang J, Keane TJ, Schneider M, Shattock R, Sattler S, Stevens Met al., 2020, Neutrophils enable local and non-invasive liposome delivery to inflamed skeletal muscle and ischemic heart, Advanced Materials, Vol: 32, Pages: 1-10, ISSN: 0935-9648

Uncontrolled inflammation is a major pathological factor underlying a range of diseases including autoimmune conditions, cardiovascular disease, and cancer. Improving localized delivery of immunosuppressive drugs to inflamed tissue in a non‐invasive manner offers significant promise to reduce severe side effects caused by systemic administration. Here, a neutrophil‐mediated delivery system able to transport drug‐loaded nanocarriers to inflamed tissue by exploiting the inherent ability of neutrophils to migrate to inflammatory tissue is reported. This hybrid system (neutrophils loaded with liposomes ex vivo) efficiently migrates in vitro following an inflammatory chemokine gradient. Furthermore, the triggered release of loaded liposomes and reuptake by target macrophages is studied. The migratory behavior of liposome‐loaded neutrophils is confirmed in vivo by demonstrating the delivery of drug‐loaded liposomes to an inflamed skeletal muscle in mice. A single low‐dose injection of the hybrid system locally reduces inflammatory cytokine levels. Biodistribution of liposome‐loaded neutrophils in a human‐disease‐relevant myocardial ischemia reperfusion injury mouse model after i.v. injection confirms the ability of injected neutrophils to carry loaded liposomes to inflammation sites. This strategy shows the potential of nanocarrier‐loaded neutrophils as a universal platform to deliver anti‐inflammatory drugs to promote tissue regeneration in inflammatory diseases.

Journal article

Patel K, Jones T, Sattler S, Mason J, Ng FSet al., 2020, Pro-arrhythmic electrophysiological and structural remodelling in rheumatoid arthritis, American Journal of Physiology: Heart and Circulatory Physiology, Vol: 319, Pages: H1008-H1020, ISSN: 0363-6135

Chronic inflammatory disorders, including rheumatoid arthritis (RA), are associated with a two-fold increase in the incidence of sudden cardiac death (SCD) compared to the healthy population. Although this is partly explained by an increased prevalence of coronary artery disease, growing evidence suggests that ischaemia alone cannot completely account for the increased risk. The present review explores the mechanisms of cardiac electrophysiological remodelling in response to chronic inflammation in RA. In particular, it focuses on the roles of non-ischaemic structural remodelling, altered cardiac ionic currents and autonomic nervous system dysfunction in ventricular arrhythmogenesis and SCD. It also explores whether common genetic elements predispose to both RA and SCD. Finally, it evaluates the potential dual effects of disease-modifying therapy in both diminishing and promoting the risk of ventricular arrhythmias and SCD.

Journal article

Sattler S, Baxan N, Ng FS, Benson L, Boyle J, Harding S, Rosenthal Net al., 2020, Myocardial damage induced by a single high dose of isoproterenol in C57BL/6J mice triggers a persistent adaptive immune response against the heart, Journal of Cellular and Molecular Medicine, ISSN: 1582-1838

Heart failure is the common final pathway of several cardiovascular conditions and a major cause of morbidity and mortality worldwide. Aberrant activation of the adaptive immune system in response to myocardial necrosis has recently been implicated in the development of heart failure. The ß-adrenergic agonist isoproterenol-hydrochloride isused for its cardiac effects in a variety of different dosing regimens with high doses causing acute cardiomyocyte necrosis.To assess if isoproterenol-induced cardiomyocyte necrosistriggersan adaptive immune response against the heart, we treated C57BL/6J mice with a single intraperitoneal injection of 160mg/kg isoproterenol. We confirmed tissue damage reminiscent of human type 2 myocardial infarction. This is followed by an adaptive immune response targeting the heart as demonstrated by the activation of T cells, the presence of anti-heart auto-antibodies in the serum, as late as 12 weeks after initial challenge and IgG deposition in the myocardium. All of these are hallmark signs of an established autoimmune response. Adoptive transfer of splenocytes from isoproterenol-treated mice induces left ventricular dilation and impairs cardiac function in healthy recipients. In summary, a single administration of a high dose of isoproterenol is a suitable high-throughput model for future studies of the pathological mechanisms of anti-heart autoimmunity and to test potential immunomodulatory therapeutic approaches.

Journal article

Sintou A, Mansfield C, Iacob A-O, Chowdhury RA, Narodden S, Rothery SM, Podoveo R, Sanchez Alonso JL, Ferraro E, Swiatlowska P, Harding S, Prasad S, Rosenthal N, Gorelik J, Sattler Set al., 2020, Mediastinal lymphadenopathy, class-switched auto-antibodies and myocardial immune-complexes during heart failure in rodents and humans, Frontiers in Cell and Developmental Biology, Vol: 8, Pages: 1-12, ISSN: 2296-634X

Mediastinal lymphadenopathy and auto-antibodies are clinical phenomena during ischemicheart failure pointing to an autoimmune response against the heart. T and B cell have beenconvincingly demonstrated to be activated after myocardial infarction, a prerequisite for thegeneration of mature auto-antibodies. Yet, little is known about the immunoglobulin isotyperepertoire thus pathological potential of anti-heart auto-antibodies during heart failure.We obtained human myocardial tissue from ischemic heart failure patients and inducedexperimental MI in rats. We found that anti-heart autoimmunity persists during heart failure.Rat mediastinal lymph nodes are enlarged and contain active secondary follicles with matureisotype-switched IgG2a B cells. Mature IgG2a auto-antibodies specific for cardiac antigens arepresent in rat heart failure serum, and IgG and complement C3 deposits are evident in heartfailure tissue of both rats and human patients.Previously established myocardial inflammation, and the herein provided proof of B cellmaturation in lymph nodes and myocardial deposition of mature auto-antibodies, provide allthe hallmark signs of an established autoimmune response in chronic heart failure.

Journal article

Rifai SE, Sintou A, Mansfield C, Houston C, Chowdhury RA, Gorelik J, Sattler Set al., 2020, Humoral factors in serum of rats with chronic heart failure induce cardiomyocyte hypertrophy and reduce viability., Clinical medicine (London, England), Vol: 20, Pages: s107-s107, ISSN: 1470-2118

Journal article

Bjornmalm A, Wong LM, Wojciechowski J, Penders J, Horgan C, Booth MA, Martin NG, Sattler S, Stevens Met al., 2019, In vivo biocompatibility and immunogenicity of metal-phenolic gelation, Chemical Science, Vol: 10, Pages: 10179-10194, ISSN: 2041-6520

In vivo forming hydrogels are of interest for diverse biomedical applications due totheir ease-of-use and minimal invasiveness and therefore high translational potential. Supramolecular hydrogels that can be assembled usingmetal–phenolic coordination of naturally occurring polyphenols and group IV metal ions (e.g. TiIVor ZrIV) provide a versatile and robust platform for engineering such materials. However, the in situformation and in vivoresponse tothis new class of materials has not yet been reported. Here, we demonstrate that metal–phenolic supramolecular gelation occurs successfully in vivo and we investigate the host response to the material over 14 weeks. TheTiIV–tannic acid materials form stable gels that are well-tolerated following subcutaneous injection. Histology reveals a mild foreign body reaction, and titanium biodistribution studies show low accumulation in distal tissues. Compared to poloxamer-based hydrogels (commonly used for in vivogelation), TiIV–tannic acid materials show a substantially improved in vitrodrug release profile for the corticosteroid dexamethasone (from <1 dayto >10 days). These results provide essential in vivo characterization for this new class of metal–phenolic hydrogels, and highlight their potential suitability for biomedical applications in areas such as drug deliveryand regenerative medicine

Journal article

Sattler S, Baxan N, Chowdhury R, Rosenthal N, Prasad S, Zhao L, Harding Set al., 2019, Characterization of acute TLR-7 agonist-induced hemorrhagic myocarditis in mice by multi-parametric quantitative cardiac MRI, Disease Models & Mechanisms, Vol: 12, Pages: 1-10, ISSN: 1754-8403

Hemorrhagic myocarditis is a potentially fatal complication of excessive levels of systemic inflammation. It has been reported in viral infection, but is also possible in systemic autoimmunity. Epicutaneous treatment of mice with the TLR-7 agonist Resiquimod induces auto-antibodies and systemic tissue damage including in the heart, and is used as an inducible mouse model of Systemic Lupus Erythematosus (SLE).Here, we show that over-activation of the TLR-7 pathway of viral recognition by Resiquimod-treatment of CFN mice induces severe thrombocytopenia and internal bleeding which manifests most prominently as hemorrhagic myocarditis. We optimized a cardiac magnetic resonance (CMR) tissue mapping approach for the in vivo detection of diffuse infiltration, fibrosis and hemorrhages using a combination of T1, T2 and T2* relaxation times, and compared results to ex vivo histopathology of cardiac sections corresponding to CMR tissue maps. This allowed a detailed correlation between in vivo CMR parameters and ex vivo histopathology, and confirmed the need to include T2* measurements to detect tissue iron for accurate interpretation of pathology associated with CMR parameter changes.In summary, we provide detailed histological and in vivo imaging-based characterization of acute hemorrhagic myocarditis as acute cardiac complication in the mouse model of Resiquimod-induced SLE, and a refined CMR protocol to allow non-invasive longitudinal in vivo studies of heart involvement in acute inflammation. We propose that adding T2* mapping to CMR protocols for myocarditis diagnosis will improve interpretation of disease mechanisms and diagnostic sensitivity.

Journal article

Björnmalm M, Wong LM, Wojciechowski J, Penders J, Horgan C, Booth M, Martin N, Sattler S, Stevens Met al., 2019, In vivo biocompatibility and immunogenicity of metal-phenolic gelation, Publisher: ChemRxiv

In vivo forming hydrogels are of interest for diverse biomedical applications due to their ease-of-use and minimal invasiveness and therefore high translational potential. Supramolecular hydrogels that can be assembled using metal–phenolic coordination of naturally occurring polyphenols and group IV metal ions (e.g. Ti<sup>IV </sup>or Zr<sup>IV</sup>) provide a versatile and robust platform for engineering such materials. However, the in situ formation and in vivo response to this new class of materials has not yet been reported. Here, we demonstrate that metal–phenolic supramolecular gelation occurs successfully in vivo and we investigate the host response to the material over 14 weeks. The Ti<sup>IV</sup>–tannic acid materials form stable gels that are well-tolerated following subcutaneous injection. Histology reveals a mild foreign body reaction, and titanium biodistribution studies show low accumulation in distal tissues. Compared to poloxamer-based hydrogels (commonly used for in vivo gelation), Ti<sup>IV</sup>–tannic acid materials show substantially improved in vitro drug loading and release profile for the corticosteroid dexamethasone (from <1 day to >10 days). These results provide essential in vivo characterization for this new class of metal–phenolic hydrogels, and highlight their potential suitability for biomedical applications in areas such as drug delivery and regenerative medicine.<br>

Working paper

Tennant JP, Crane H, Crick T, Davila J, Enkhbayar A, Havemann J, Kramer B, Martin R, Masuzzo P, Nobes A, Rice C, Rivera-Lopez B, Ross-Hellauer T, Sattler S, Thacker PD, Vanholsbeeck Met al., 2019, Ten Hot Topics around Scholarly Publishing, PUBLICATIONS, Vol: 7, ISSN: 2304-6775

Journal article

Ferrini A, Stevens MM, Sattler S, Rosenthal Net al., 2019, Toward regeneration of the heart: Bioengineering strategies for immunomodulation, Frontiers in Cardiovascular Medicine, Vol: 6, ISSN: 2297-055X

Myocardial Infarction (MI) is the most common cardiovascular disease. An average-sized MI causes the loss of up to 1 billion cardiomyocytes and the adult heart lacks the capacity to replace them. Although post-MI treatment has dramatically improved survival rates over the last few decades, more than 20% of patients affected by MI will subsequently develop heart failure (HF), an incurable condition where the contracting myocardium is transformed into an akinetic, fibrotic scar, unable to meet the body's need for blood supply. Excessive inflammation and persistent immune auto-reactivity have been suggested to contribute to post-MI tissue damage and exacerbate HF development. Two newly emerging fields of biomedical research, immunomodulatory therapies and cardiac bioengineering, provide potential options to target the causative mechanisms underlying HF development. Combining these two fields to develop biomaterials for delivery of immunomodulatory bioactive molecules holds great promise for HF therapy. Specifically, minimally invasive delivery of injectable hydrogels, loaded with bioactive factors with angiogenic, proliferative, anti-apoptotic and immunomodulatory functions, is a promising route for influencing the cascade of immune events post-MI, preventing adverse left ventricular remodeling, and offering protection from early inflammation to fibrosis. Here we provide an updated overview on the main injectable hydrogel systems and bioactive factors that have been tested in animal models with promising results and discuss the challenges to be addressed for accelerating the development of these novel therapeutic strategies.

Journal article

Sintou A, Rifai SE, Mansfield C, Rothery S, Sanchez Alonso J, Narodden S, Sharma K, Ferraro E, Hasham M, Swiatlowska P, Harding S, Rosenthal N, Gorelik J, Sattler Set al., 2019, Persistent anti-heart autoimmunity causes cardiomyocyte damage in chronic heart failure, Publisher: bioRxiv

Although clinicians and researchers have long appreciated the detrimental effects of excessive acute inflammation after myocardial infarction (MI), less is known about the role of the adaptive immune system in MI complications including heart failure. Yet, abundant cardiac self-antigens released from necrotic cardiomyocytes in a highly inflammatory environment are likely to overwhelm peripheral mechanisms of immunological self-tolerance and adaptive auto-reactivity against the heart may cause ongoing tissue destruction and exacerbate progression to chronic heart failure (CHF). Here, we confirm that the adaptive immune system is indeed persistently active in CHF due to ischemic heart disease triggered by MI in rats. Heart draining mediastinal lymph nodes contain active secondary follicles with mature class-switched IgG2a positive cells, and mature anti-heart auto-antibodies binding to cardiac epitopes are still present in serum as late as 16 weeks after MI. When applied to healthy cardiomyocytes in vitro, humoral factors present in CHF serum promoted apoptosis, cytotoxicity and signs of hypertrophy. These findings directly implicate post-MI autoimmunity as an integral feature of CHF progression, constituting a roadblock to effective regeneration and a promising target for therapeutic intervention.

Working paper

Sanghera C, Wong LM, Panahi M, Sintou A, Hasham M, Sattler Set al., 2019, Cardiac phenotype in mouse models of systemic autoimmunity, Disease Models & Mechanisms, Vol: 12, ISSN: 1754-8403

Patients suffering from systemic autoimmune diseases are at significant risk of cardiovascular complications. This can be due to systemically increased levels of inflammation leading to accelerated atherosclerosis, or due to direct damage to the tissues and cells of the heart. Cardiac complications include an increased risk of myocardial infarction, myocarditis and dilated cardiomyopathy, valve disease, endothelial dysfunction, excessive fibrosis, and bona fide autoimmune-mediated tissue damage by autoantibodies or auto-reactive cells. There is, however, still a considerable need to better understand how to diagnose and treat cardiac complications in autoimmune patients. A range of inducible and spontaneous mouse models of systemic autoimmune diseases is available for mechanistic and therapeutic studies. For this Review, we systematically collated information on the cardiac phenotype in the most common inducible, spontaneous and engineered mouse models of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis. We also highlight selected lesser-known models of interest to provide researchers with a decision framework to choose the most suitable model for their study of heart involvement in systemic autoimmunity.

Journal article

Sattler S, Couch LS, Harding SE, 2018, Takotsubo Syndrome: Latest addition to the expanding family of immune-mediated diseases?, JACC: Basic to Translational Science, Vol: 3, Pages: 779-781, ISSN: 2452-302X

Journal article

Sattler S, Ng FS, Panahi M, 2018, Immunopharmacology of post-myocardial infarction and heart failure medications, Journal of Clinical Medicine, Vol: 7, ISSN: 2077-0383

The immune system responds to acute tissue damage after myocardial infarction (MI) and orchestrates healing and recovery of the heart. However, excessive inflammation may lead to additional tissue damage and fibrosis and exacerbate subsequent functional impairment, leading to heart failure. The appreciation of the immune system as a crucial factor after MI has led to a surge of clinical trials investigating the potential benefits of immunomodulatory agents previously used in hyper-inflammatory conditions, such as autoimmune disease. While the major goal of routine post-MI pharmacotherapy is to support heart function by ensuring appropriate blood pressure and cardiac output to meet the demands of the body, several drug classes also affect a range of immunological pathways and modulate the post-MI immune response, which is crucial to take into account when designing future immunomodulatory trials. This review outlines how routine post-MI pharmacotherapy affects the immune response and may thus influence post-MI outcomes and development towards heart failure. Current key drug classes are discussed, including platelet inhibitors, statins, β-blockers, and renin–angiotensin–aldosterone inhibitors.

Journal article

Panahi M, Papanikolaou A, Torabi A, Zhang JG, Khan H, Vazir A, Hasham MG, Cleland J, Rosenthal N, Harding S, Sattler Set al., 2018, Immunomodulatory interventions in myocardial infarction and heart failure: a systematic review of clinical trials and meta-analysis of IL-1 inhibition, Cardiovascular Research, Vol: 114, Pages: 1445-1461, ISSN: 1755-3245

Following a myocardial infarction (MI), the immune system helps to repair ischaemic damage and restore tissue integrity, but excessive inflammation has been implicated in adverse cardiac remodelling and development towards heart failure (HF). Pre-clinical studies suggest that timely resolution of inflammation may help prevent HF development and progression. Therapeutic attempts to prevent excessive post-MI inflammation in patients have included pharmacological interventions ranging from broad immunosuppression to immunomodulatory approaches targeting specific cell types or factors with the aim to maintain beneficial aspects of the early post-MI immune response. These include the blockade of early initiators of inflammation including reactive oxygen species and complement, inhibition of mast cell degranulation and leucocyte infiltration, blockade of inflammatory cytokines, and inhibition of adaptive B and T-lymphocytes. Herein, we provide a systematic review on post-MI immunomodulation trials and a meta-analysis of studies targeting the inflammatory cytokine Interleukin-1. Despite an enormous effort into a significant number of clinical trials on a variety of targets, a striking heterogeneity in study population, timing and type of treatment, and highly variable endpoints limits the possibility for meaningful meta-analyses. To conclude, we highlight critical considerations for future studies including (i) the therapeutic window of opportunity, (ii) immunological effects of routine post-MI medication, (iii) stratification of the highly diverse post-MI patient population, (iv) the potential benefits of combining immunomodulatory with regenerative therapies, and at last (v) the potential side effects of immunotherapies.

Journal article

Panahi M, Papanikolaou A, Khan H, Torabi A, Cleland JGF, Vadgama N, Rosenthal NA, Harding S, Sattler Set al., 2018, A systematic review and meta-analysis of anti-cytokine therapies targeting IL-1 and TNF- A in myocardial infarction and heart failure, European-Society-of-Cardiology Congress, Publisher: European Society of Cardiology, Pages: 599-599, ISSN: 0195-668X

Conference paper

Hasham M, Baxan N, Dent O, Branca J, Hameed T, Stella S, Pandya B, Harding S, Rosenthal N, Sattler Set al., 2017, Heart disease in systemic autoimmunity; an inducible mouse model to study regenerative processes and therapies under inflammatory conditions, Annual Conference of the British-Society-for-Gene-and-Cell-Therapy / Joint UK-Regenerative-Medicine-Platform Meeting, Publisher: MARY ANN LIEBERT, INC, Pages: A20-A21, ISSN: 1043-0342

Conference paper

Sattler S, Fairchild P, Watt F, Rosenthal N, Harding Set al., 2017, The adaptive immune response to cardiac injury-the true roadblock to effective regenerative therapies?, npj Regenerative Medicine, Vol: 2, ISSN: 2057-3995

The regenerative capacity of adult human tissues and organs is limited, but recent developments have seen the advent of promising new technologies for regenerative therapy. The human heart is of particular interest for regenerative medicine, as cardiac tissue damage is repaired by the formation of rigid scar tissue, which causes inevitable structural changes and progressive functional decline leading to heart failure. Cardiac regenerative medicine aims to prevent scar formation or replace existing scars to halt or reverse adverse remodeling and therapeutic approaches include the use of biomaterials, gene therapies, delivery of growth factors and (stem) cell therapies. Regenerative therapies, however, face significant obstacles in a hostile microenvironment. While the early immune response to a myocardial infarct is essential to ensure tissue integrity and to avoid fatal cardiac rupture, excessive activation of endogenous repair mechanisms may lead to ongoing inflammation, fibrosis and sustained autoimmune-mediated tissue damage. Anti-cardiac auto-reactivity of the adaptive immune system has been suggested to be involved in structural remodeling, functional decline and the development of heart failure. It is, therefore, crucial to first understand the endogenous response to cardiac tissue damage and how to restore immune tolerance to cardiac tissue, before additional regenerative therapies can achieve their full potential.

Journal article

Sattler S, 2017, The role of the immune system beyond the fight against infection, The Immunology of Cardiovascular Homeostasis and Pathology, Editors: Sattler, KennedyLydon, Publisher: Springer, Pages: 3-14, ISBN: 9783319576138

The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system’s overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed

Book chapter

Rahman MS, Woollard K, 2017, Atherosclerosis., The Immunology of Cardiovascular Homeostasis and Pathology, Editors: Sattler, Kennedy-Lydon, Publisher: Springer, Pages: 121-144, ISBN: 978-3-319-57613-8

In this chapter, we discuss the manner through which the immune system regulates the cardiovascular system in health and disease. We define the cardiovascular system and elements of atherosclerotic disease, the main focus in this chapter. Herein we elaborate on the disease process that can result in myocardial infarction (heart attack), ischaemic stroke and peripheral arterial disease. We have discussed broadly the homeostatic mechanisms in place that help autoregulate the cardiovascular system including the vital role of cholesterol and lipid clearance as well as the role lipid homeostasis plays in cardiovascular disease in the context of atherosclerosis. We then elaborate on the role played by the immune system in this setting, namely, major players from the innate and adaptive immune system, as well as discussing in greater detail specifically the role played by monocytes and macrophages.This chapter should represent an overview of the role played by the immune system in cardiovascular homeostasis; however further reading of the references cited can expand the reader's knowledge of the detail, and we point readers to many excellent reviews which summarise individual immune systems and their role in cardiovascular disease.

Book chapter

Hasham MG, Baxan N, Stuckey D, Dent O, Branca J, Perkins BRA, Duffy T, Hameed TS, Stella SE, Bellahcene M, Schneider MD, Harding SE, Rosenthal N, Sattler Set al., 2017, Systemic autoimmunity induced by Toll-like receptor 7/8 agonist Resiquimod causes myocarditis and dilated cardiomyopathy: a new model of autoimmune heart disease, Disease Models & Mechanisms, Vol: 10, Pages: 259-270, ISSN: 1754-8411

Systemic autoimmune diseases such as Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA) show significant heart involvement and cardiovascular morbidity, which can be due to systemically increased levels of inflammation or direct autoreactivity targeting cardiac tissue. Despite high clinical relevance, cardiac damage secondary to systemic autoimmunity lacks inducible rodent models. Here we characterize immune-mediated cardiac tissue damage in a new model of SLE induced by topical application of the TLR-7/8 agonist Resiquimod. We observe a cardiac phenotype reminiscent of autoimmune-mediated dilated cardiomyopathy, and identify auto-antibodies as major contributors to cardiac tissue damage. Resiquimod-induced heart disease is a highly relevant mouse model for mechanistic and therapeutic studies aiming to protect the heart during autoimmunity.

Journal article

Delcassian D, Sattler S, Dunlop IE, 2017, T cell immunoengineering with advanced biomaterials, Integrative Biology, Vol: 9, Pages: 211-222, ISSN: 1757-9694

Recent advances in biomaterials design offer the potential to actively control immune cell activation and behaviour. Many human diseases, such as infections, cancer, and autoimmune disorders, are partly mediated by inappropriate or insufficient activation of the immune system. T cells play a central role in the host immune response to these diseases, and so constitute a promising cell type for manipulation. In vivo, T cells are stimulated by antigen presenting cells (APC), therefore to design immunoengineering biomaterials that control T cell behaviour, artificial interfaces that mimic the natural APC-T cell interaction are required. This review draws together research in the design and fabrication of such biomaterial interfaces, and highlights efforts to elucidate key parameters in T cell activation, such as substrate mechanical properties and spatial organization of receptors, illustrating how they can be manipulated by bioengineering approaches to alter T cell function.

Journal article

Sattler S, Rosenthal N, 2016, The neonate versus adult mammalian immune system in cardiac repair and regeneration, BBA - Molecular Cell Research, Vol: 1863, Pages: 1813-1821, ISSN: 0167-4889

The immune system is a crucial player in tissue homeostasis and woundhealing. A sophisticated cascade of events triggered upon injury ensuresprotection from infection and initiates and orchestrates healing. While theneonatal mammal can readily regenerate damaged tissues, adult regenerativecapacity is limited to specific tissue types, and in organs such as the heart,adult wound healing results in fibrotic repair and loss of function. Growingevidence suggests that the immune system greatly influences the balancebetween regeneration and fibrotic repair. The neonate mammalian immunesystem has impaired pro-inflammatory function, is prone to T-helper type 2responses and has an immature adaptive immune system skewed towardsregulatory T cells. While these characteristics make infants susceptible toinfection and prone to allergies, it may also provide an immunologicalenvironment permissive of regeneration.In this review we will give a comprehensive overview of the immune cellsinvolved in healing and regeneration of the heart and explore differencesbetween the adult and neonate immune system that may explain differencesin regenerative ability.

Journal article

Gallego Colon E, Sampson RD, Sattler S, Schneider MD, Rosenthal N, Tonkin Jet al., 2015, Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction, Mediators of Inflammation, Vol: 2015, ISSN: 1466-1861

Strategies to limit damage and improve repair after myocardial infarct remain a major therapeutic goal in cardiology. Our previous studies have shown that constitutive expression of a locally acting insulin-like growth factor-1 Ea (IGF-1Ea) propeptide promotes functional restoration after cardiac injury associated with decreased scar formation. In the current study, we investigated the underlying molecular and cellular mechanisms behind the enhanced functional recovery. We observed improved cardiac function in mice overexpressing cardiac-specific IGF-1Ea as early as day 7 after myocardial infarction. Analysis of gene transcription revealed that supplemental IGF-1Ea regulated expression of key metalloproteinases (MMP-2 and MMP-9), their inhibitors (TIMP-1 and TIMP-2), and collagen types (Col 1α1 and Col 1α3) in the first week after injury. Infiltration of inflammatory cells, which direct the remodelling process, was also altered; in particular there was a notable reduction in inflammatory Ly6C+ monocytes at day 3 and an increase in anti-inflammatory CD206+ macrophages at day 7. Taken together, these results indicate that the IGF-1Ea transgene shifts the balance of innate immune cell populations early after infarction, favouring a reduction in inflammatory myeloid cells. This correlates with reduced extracellular matrix remodelling and changes in collagen composition that may confer enhanced scar elasticity and improved cardiac function.

Journal article

Zhao H, Davies TJ, Ning J, Chang Y, Sachamitr P, Sattler S, Fairchild PJ, Huang F-Pet al., 2015, A Highly Optimized Protocol for Reprogramming Cancer Cells to Pluripotency Using Nonviral Plasmid Vectors, CELLULAR REPROGRAMMING, Vol: 17, Pages: 7-18, ISSN: 2152-4971

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00627543&limit=30&person=true