Imperial College London

ProfessorSpencerSherwin

Faculty of EngineeringDepartment of Aeronautics

Professor of Computational Fluid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 5052s.sherwin Website

 
 
//

Location

 

313BCity and Guilds BuildingSouth Kensington Campus

//

Summary

 

Summary

Biography: Spencer Sherwin is Head of Aerodynamics and Professor of Computational Fluid Mechanics in the Department of Aeronautics and Director of Research Computing Service at Imperial College London. He received his MSE and PhD from the Department of Mechanical and Aerospace Engineering Department at Princeton University. Prior to this he received his BEng from the Department of Aeronautics at Imperial College London.

Group web page: www.sherwinlab.info

Research: Professor Sherwin leads an active research group  specializing in the development and application of parallel high order spectral/hp element methods (Nektar ) for flow around complex geometries with a particular emphasis on vortical and bluff body flows and biomedical modelling of the cardiovascular system. More recently, he has been closely  involved in industrial application of these methods through partnerships with McLaren Racing, Airbus and Rolls Royce. Recently he completed a RAEng/McLaren Racing Fellowship during which spectral/hp element methods were applied to problems of interest of Formula One aerodynamics that promoted the development of wall resolving large eddy simulation capabilities for highly unsteady and separated flows

Other Activities: Currently Professor Sherwin is  Principal Investigator on the EPSRC funded Platform for Research In Simulation Methods. Professor Sherwin is also the academic lead to the Joint PhD programme with the University of São Paulo. 

Publications

Journals

Marcon J, Kopriva DA, Sherwin SJ, et al., 2019, A high resolution PDE approach to quadrilateral mesh generation, Journal of Computational Physics, Vol:399, ISSN:0021-9991, Pages:1-17

Moura R, Aman M, Peiró J, et al., 2019, Spatial eigenanalysis of spectral/hp continuous Galerkin schemes and their stabilisation via DG-mimicking spectral vanishing viscosity: Application to high Reynolds number flows, Journal of Computational Physics, ISSN:0021-9991, Pages:109112-109112

Vymazal M, Moxey D, Cantwell CD, et al., 2019, On weak Dirichlet boundary conditions for elliptic problems in the continuous Galerkin method, Journal of Computational Physics, Vol:394, ISSN:0021-9991, Pages:732-744

More Publications