Publications
9 results found
Wilson C, De Stercke S, Zimm C, 2023, Building back better: Granular energy technologies in green recovery funding programs, Joule, Vol: 7, Pages: 1206-1226, ISSN: 2542-4351
Granular energy technologies with smaller unit sizes and costs deploy faster, create more jobs, and distribute benefits more widely than lumpy large-scale alternatives. These characteristics of granularity align with the aims of fiscal stimulus in response to COVID-19. We analyze the technological granularity of 93 green recovery funding programs in France, Germany, South Korea, and the UK that target £72.9 billion for low-carbon energy technologies and infrastructures across five emissions-intensive sectors. We find that South Korea’s “New Deal” program is the most technologically granular with strong weighting toward distributed renewables, smart technologies, electric vehicle charge points, and other relatively low unit cost technologies that are quick to deploy. The UK has the least granular portfolio, concentrating large amounts of public money on small numbers of mega-scale energy projects with high implementation risks. We demonstrate how technological granularity has multiple desirable characteristics of green recovery: jobs, speed, and distributed benefits.
Jayaramu V, Zulkafli Z, De Stercke S, et al., 2023, Leptospirosis modelling using hydrometeorological indices and random forest machine learning, International Journal of Biometeorology: the description, causes, and implications of climatic change, Vol: 67, Pages: 423-437, ISSN: 0020-7128
Leptospirosis is a zoonosis that has been linked to hydrometeorological variability. Hydrometeorological averages and extremes have been used before as drivers in the statistical prediction of disease. However, their importance and predictive capacity are still little known. In this study, the use of a random forest classifier was explored to analyze the relative importance of hydrometeorological indices in developing the leptospirosis model and to evaluate the performance of models based on the type of indices used, using case data from three districts in Kelantan, Malaysia, that experience annual monsoonal rainfall and flooding. First, hydrometeorological data including rainfall, streamflow, water level, relative humidity, and temperature were transformed into 164 weekly average and extreme indices in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). Then, weekly case occurrences were classified into binary classes “high” and “low” based on an average threshold. Seventeen models based on “average,” “extreme,” and “mixed” indices were trained by optimizing the feature subsets based on the model computed mean decrease Gini (MDG) scores. The variable importance was assessed through cross-correlation analysis and the MDG score. The average and extreme models showed similar prediction accuracy ranges (61.5–76.1% and 72.3–77.0%) while the mixed models showed an improvement (71.7–82.6% prediction accuracy). An extreme model was the most sensitive while an average model was the most specific. The time lag associated with the driving indices agreed with the seasonality of the monsoon. The rainfall variable (extreme) was the most important in classifying the leptospirosis occurrence while streamflow was the least important despite showing higher correlations with leptospirosis.
O'Keeffe J, Pluchinotta I, De Stercke S, et al., 2022, Evaluating natural capital performance of urban development through system dynamics: A case study from London., Science of the Total Environment, Vol: 824, Pages: 1-12, ISSN: 0048-9697
Natural capital plays a central role in urban functioning, reducing flooding, mitigating urban heat island effects, reducing air pollution, and improving urban biodiversity through provision of habitat space. There is also evidence on the role played by blue and green space in improving physical and mental health, reducing the burden on the health care service. Yet from an urban planning and development view, natural capital may be considered a nice to have, but not essential element of urban design; taking up valuable space which could otherwise be used for traditional built environment uses. While urban natural capital is largely recognised as a positive element, its benefits are difficult to measure both in space and time, making its inclusion in urban (re)development difficult to justify. Here, using a London case study and information provided by key stakeholders, we present a system dynamics (SD) modelling framework to assess the natural capital performance of development and aid design evaluation. A headline indicator: Natural Space Performance, is used to evaluate the capacity of natural space to provide ecosystem services, providing a semi-quantitative measure of system wide impacts of change within a combined natural, built and social system. We demonstrate the capacity of the model to explore how combined or individual changes in development design can affect natural capital and the provision of ecosystem services, for example, biodiversity or flood risk. By evaluating natural capital and ecosystem services over time, greater justification for their inclusion in planning and development can be derived, providing support for increased blue and green space within cities, improving urban sustainability and enhancing quality of life. Furthermore, the application of a SD approach captures key interactions between variables over time, showing system evolution while highlighting intervention opportunities.
De Stercke S, Chaturvedi V, Buytaert W, et al., 2020, Water-energy nexus-based scenario analysis for sustainable development of Mumbai, Environmental Modelling and Software, Vol: 134, Pages: 1-17, ISSN: 1364-8152
The urban water-energy nexus sits at the intersection of the global phenomena of water scarcity, energy transitions and urbanisation. Research found that end use dominates the waterenergy nexus and that this component plays an important role in urban dynamics, but focussed on the Global North. We investigate the nexus of Mumbai and its long term resource demand. Our tool is a novel system dynamics model representing the urban water-energy nexus and takes into account characteristics such as intermittent water supply and the presence of slums. We devised scenarios around the Sustainable Development Goals and the Swachh Bharat Mission. The model shows that both can be achieved while saving on future water system infrastructure investments compared to business-as-usual. We find that also in Mumbai end use dominates the nexus. Representing end-use interactions increases expected water demand. This work indicates that globally, sustainable development of infrastructure must consider the urban water-energy nexus.
Wilson C, Grubler A, Bento N, et al., 2020, Granular technologies to accelerate decarbonization Smaller, modular energy technologies have advantages, SCIENCE, Vol: 368, Pages: 36-+, ISSN: 0036-8075
- Author Web Link
- Cite
- Citations: 53
De Stercke S, Mijic A, Buytaert W, et al., 2018, Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective, Applied Energy, Vol: 230, Pages: 615-626, ISSN: 0306-2619
Cities are concentrations of demand to water and energy systems that rely on resources under increasing pressure from scarcity and climate change mitigation targets. They are linked in many ways across their different components, the collection of which is termed a nexus. In industrialised countries, the residential end-use component of the urban water-energy nexus has been identified as significant. However, the effect of the end-use water and energy interdependence on urban dynamics had not been studied. In this work, a novel system dynamics model is developed with an explicit representation of the water-energy interactions at the residential end use and their influence on the demand for resources. The model includes an endogenous carbon tax based climate change mitigation policy which aims to meet carbon targets by reducing consumer demand through price. It also encompasses water resources planning with respect to system capacity and supply augmentation. Using London as a case study, we show that the inclusion of end-use interactions has a major impact on the projections of water sector requirements. In particular, future water demand per capita is lower, and less supply augmentation is needed than would be planned for without considering the interactions. We find that deep decarbonisation of electricity is necessary to maintain an acceptable quality of life while remaining within water and greenhouse gas emissions constraints. The model results show a clear need for consideration of the end-use level water-energy interactions in policy analysis. The modelling tool provides a base for this that can be adapted to the context of any industrialised country.
Grubler A, Wilson C, Bento N, et al., 2018, A low energy demand scenario for meeting the 1.5 degrees C target and sustainable development goals without negative emission technologies, NATURE ENERGY, Vol: 3, Pages: 515-527, ISSN: 2058-7546
Levesque A, Pietzcker RC, Baumstark L, et al., 2018, How much energy will buildings consume in 2100? A global perspective within a scenario framework, Energy, Vol: 148, Pages: 514-527, ISSN: 0360-5442
© 2018 Elsevier Ltd The demand for energy in buildings varies strongly across countries and climatic zones. These differences result from manifold factors, whose future evolution is uncertain. In order to assess buildings’ energy demand across the 21st century, we develop an energy demand model — EDGE — and apply it in an analytical scenario framework — the shared socio-economic pathways (SSPs) — to take socio-economic uncertainty into consideration. EDGE projects energy demand for five energy services, four fuel categories, and eleven regions covering the world. The analysis shows that, without further climate policies, global final energy demand from buildings could increase from 116 EJ/yr in 2010 to a range of 120–378 EJ/yr in 2100. Our results show a paradigm shift in buildings’ energy demand: appliances, lighting and space cooling dominate demand, while the weight of space heating and cooking declines. The importance of developing countries increases and electricity becomes the main energy carrier. Our results are of high relevance for climate mitigation studies as they create detailed baselines that define the mitigation challenge: the stress on the energy supply system stemming from buildings will grow, though mainly in the form of electricity for which a number of options to decrease GHG emissions exist.
Stercke S, Mijic A, Keirstead J, 2016, A Review of Urban Water-energy Linkages in End-use: A Call for Joint Demand Studies, British Journal of Environment and Climate Change, Vol: 6, Pages: 192-200
This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.