Imperial College London


Faculty of EngineeringDepartment of Materials

Research Associate







2M11Royal School of MinesSouth Kensington Campus





Dr Stuart Higgins is a Research Associate in the Departmental of Materials at Imperial College London. Stuart works within the group of Prof. Molly Stevens, focusing on the microfabrication of innovative materials for biomedical applications.

Photograph of a flexible electrical circuit

His current research interests include the microfabrication of novel interfaces for interacting with cells, biosensing and organic bioelectronics.

His work has also included exploring the fabrication of flexible electronics based on organic semiconductors. In particular he developed organic field-effect transistors for use in complementary logic circuits, and organic diodes for high-performance energy harvesting systems.

Scanning electron microscopy of silicon nanoneedles covering a surfacePreviously, Stuart was a Research Associate in the group of Prof. Henning Sirringhaus in the Cavendish Laboratory at the University of Cambridge. He completed his PhD under the supervison of Prof. Alasdair Campbell in the Department of Physics at Imperial College London. He graduated from Imperial College London with an MSci degree in Physics, during which he spent a year working at the Max Planck Institute for Nuclear Physics in Germany under the supervision of Priv.-Doz. Dr. José Ramón Crespo López-Urrutia.

Stuart produces the award-winning podcast, Scientists not the Science, which explores the culture of working in science, and created the project Science in the Supermarket, which aims to bring engagement activities into neutral third spaces such as supermarkets, promoting the benefits of studying STEM subjects to young people.

Visit personal website

Twitter: @StuartGHiggins



Lin Y, Penna M, Spicer CD, et al., 2021, High-Throughput Peptide Derivatization toward Supramolecular Diversification in Microtiter Plates., Acs Nano

Belessiotis-Richards A, Higgins S, Sansom MSP, et al., 2020, Coarse Grained Simulations Suggest the Epsin N-Terminal Homology Domain Can Sense Membrane Curvature Without its Terminal Amphipathic Helix, Acs Nano, Vol:14, ISSN:1936-0851, Pages:16919-6928

Higgins S, Lo Fiego A, Patrick I, et al., 2020, Organic bioelectronics: using highly conjugated polymers to interface with biomolecules, cells and tissues in the human body, Advanced Materials Technologies, Vol:5, ISSN:2365-709X, Pages:1-35

Seong H, Higgins SG, Penders J, et al., 2020, Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression and nuclear membrane curvature, Acs Nano, Vol:14, ISSN:1936-0851, Pages:5371-5381

Higgins S, Becce M, Belessiotis Richards A, et al., 2020, High-aspect-ratio nanostructured surfaces as biological metamaterials, Advanced Materials, Vol:32, ISSN:0935-9648, Pages:1-44

More Publications