Imperial College London

Dr Stuart G. Higgins

Faculty of EngineeringDepartment of Materials

Research Associate







2M11Royal School of MinesSouth Kensington Campus





Dr Stuart Higgins is a Research Associate in the Departmental of Materials at Imperial College London. He works within the group of Prof. Molly Stevens, focusing on the microfabrication of innovative materials for biomedical applications.

Photograph of a flexible electrical circuitStuart holds a CRUK Early Detection Primer Award to investigate organic bioelectronic sensors for the early detection of breast cancer in blood samples. He also works on the fabrication of nanostructured surfaces that can be used to study cell-biomaterial interfaces. This work uses cell-based image profiling to allow the changes in hundreds of thousands of cells to be measured, quantified, and modelled.

Previously, his research has included exploring the fabrication of flexible electronics based on organic semiconductors. He developed organic field-effect transistors for use in flexible displays and complementary logic circuits, and organic diodes for high-performance energy harvesting systems for wireless smart packaging.

Scanning electron microscopy of silicon nanoneedles covering a surfaceBefore joining the Stevens Group, Stuart was a Research Associate in the group of Prof. Henning Sirringhaus in the Cavendish Laboratory at the University of Cambridge. He completed his PhD under the supervision of Prof. Alasdair Campbell in the Department of Physics at Imperial College London. He graduated from Imperial College London with an MSci degree in Physics, during which he spent a year working at the Max Planck Institute for Nuclear Physics in Germany under the supervision of Priv.-Doz. Dr. José Ramón Crespo López-Urrutia.

Stuart produces the award-winning podcast, Scientists not the Science, which explores the culture of working in science, and created the project Science in the Supermarket, which aims to bring engagement activities into neutral third spaces such as supermarkets, promoting the benefits of studying STEM subjects to young people.

Visit personal website

Twitter: @StuartGHiggins



Belessiotis-Richards A, Larsen AH, Higgins SG, et al., 2022, Coarse-Grained Simulations Suggest Potential Competing Roles of Phosphoinositides and Amphipathic Helix Structures in Membrane Curvature Sensing of the AP180 N-Terminal Homology Domain., J Phys Chem B, Vol:126, Pages:2789-2797

Belessiotis-Richards A, Larsen AH, Higgins SG, et al., 2022, Coarse-grained simulations suggest phosphoinositides and amphipathic helix structure play opposing roles in membrane curvature sensing of the AP180 N-terminal homology domain, The Journal of Physical Chemistry B: Biophysical Chemistry, Biomaterials, Liquids, and Soft Matter, ISSN:1520-5207

Bost JP, Ojansivu M, Munson MJ, et al., 2022, Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides, Communications Biology, Vol:5, ISSN:2399-3642

Higgins S, Nogiwa Valdez A, Stevens M, 2022, Considerations for implementing electronic laboratory notebooks in an academic research environment, Nature Protocols, Vol:17, ISSN:1750-2799, Pages:179-189


Brito L, Mylonaki I, Grigsby CL, et al., 2021, Genetic Enhancement of Epicardial Paracrine Signalling for Cardiac Regeneration, LIPPINCOTT WILLIAMS & WILKINS, ISSN:0009-7322

More Publications