Imperial College London


Faculty of Natural SciencesDepartment of Physics

Reader in Plasma Physics



+44 (0)20 7594 9643stuart.mangles Website




725Blackett LaboratorySouth Kensington Campus





In my research, I use intense laser-plasma interactions to create new kinds of compact particle accelerators and X-ray light sources, and I exploit the unique properties of these sources to explore the physics of extreme conditions. 

Particle accelerators are well known as important tools of scientific discovery, but they are large and expensive machines. The laser wakefield acceleration technique I research now allows high-energy particle and X-ray beams to be produced in a university size laboratory. Using these accelerators we can now produce multi-GeV electron beams in a plasma accelerator just a few centimetres long (something which a conventional accelerator can only achieve in one hundred metres or more). 

The unique properties of the beams that laser wakefield accelerators produce, together with their co-location and easy synchronization with other high-power laser sources, are now helping to drive a new generation of experiments.  These experiments aim to understand how matter behaves under extreme conditions – extremely high temperatures, densities and electromagnetic field intensities compared to anything found on Earth, but conditions that are surprisingly common and important throughout the universe. 



Kneip S, McGuffey C, Martins JL, et al., A Bright Spatially-Coherent Compact X-ray Synchrotron Source

Cole JM, Symes DR, Lopes NC, et al., 2018, High-resolution mu CT of a mouse embryo using a compact laser-driven X-ray betatron source, Proceedings of the National Academy of Sciences of the United States of America, Vol:115, ISSN:0027-8424, Pages:6335-6340

Streeter MJ, Kneip S, Bloom MS, et al., 2018, Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator, Physical Review Letters, Vol:120, ISSN:0031-9007

Streeter MJV, Dann SJD, Scott JDE, et al., 2018, Temporal feedback control of high-intensity laser pulses to optimize ultrafast heating of atomic clusters, Applied Physics Letters, Vol:112, ISSN:0003-6951

More Publications