Imperial College London


Faculty of Natural SciencesDepartment of Physics

Reader in Plasma Physics



+44 (0)20 7594 9643stuart.mangles Website




725Blackett LaboratorySouth Kensington Campus





In my research, I use intense laser-plasma interactions to create new kinds of compact particle accelerators and X-ray light sources, and I exploit the unique properties of these sources to explore the physics of extreme conditions. 

Particle accelerators are well known as important tools of scientific discovery, but they are large and expensive machines. The laser wakefield acceleration technique I research now allows high-energy particle and X-ray beams to be produced in a university size laboratory. Using these accelerators we can now produce multi-GeV electron beams in a plasma accelerator just a few centimetres long (something which a conventional accelerator can only achieve in one hundred metres or more). 

The unique properties of the beams that laser wakefield accelerators produce, together with their co-location and easy synchronization with other high-power laser sources, are now helping to drive a new generation of experiments.  These experiments aim to understand how matter behaves under extreme conditions – extremely high temperatures, densities and electromagnetic field intensities compared to anything found on Earth, but conditions that are surprisingly common and important throughout the universe. 



Warwick JR, Alejo A, Dzelzainis T, et al., 2018, General features of experiments on the dynamics of laser-driven electron–positron beams, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol:909, ISSN:0168-9002, Pages:95-101

Behm KT, Cole JM, Joglekar AS, et al., 2018, A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV, Review of Scientific Instruments, Vol:89, ISSN:0034-6748

Wood JC, Chapman DJ, Poder K, et al., 2018, Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator, Scientific Reports, Vol:8, ISSN:2045-2322

Poder K, Tamburini M, Sarri G, et al., 2018, Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser, Physical Review X, Vol:8, ISSN:2160-3308

Schumaker W, Liang T, Clarke R, et al., 2018, Making pions with laser light, New Journal of Physics, Vol:20, ISSN:1367-2630

More Publications