Imperial College London

ProfessorStuartMangles

Faculty of Natural SciencesDepartment of Physics

Professor of Laser-Plasma Physics
 
 
 
//

Contact

 

+44 (0)20 7594 9643stuart.mangles Website

 
 
//

Location

 

725Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

172 results found

Bradley LE, Streeter MJ, Murphy CD, Arran C, Blackburn TG, Galletti M, Mangles SPD, Ridgers CPet al., 2021, Effect of laser temporal intensity skew on enhancing pair production in laser-electron-beam collisions, NEW JOURNAL OF PHYSICS, Vol: 23, ISSN: 1367-2630

Journal article

Finlay OJ, Gruse JN, Thornton C, Allott R, Armstrong CD, Baird CD, Bourgeois N, Brenner C, Cipiccia S, Cole JM, Gregory C, Jamison S, Katzir Y, Lopes NC, Mangles SPD, Murphy CD, Najmudin Z, Neely D, Pickard LR, Potter KD, Rajeev PP, Rusby D, Selwood MP, Symes DR, Underwood CID, Wood JC, Thomas AGR, Streeter MJet al., 2021, Characterisation of a laser plasma betatron source for high resolution x-ray imaging, PLASMA PHYSICS AND CONTROLLED FUSION, Vol: 63, ISSN: 0741-3335

Journal article

Baggott RA, Rose S, Mangles SPD, 2021, Temperature equilibration due to charge state fluctuations in dense plasmas, Physical Review Letters, Vol: 27, ISSN: 0031-9007

The charge states of ions in dense plasmas fluctuate due to collisionalionization and recombination. Here we show how, by modifying the ioninteraction potential, these fluctuations can mediate energy exchange betweenthe plasma electrons and ions. Moreover, we develop a theory for this novelelectron-ion energy transfer mechanism. Calculations using a random walkapproach for the fluctuations suggest that the energy exchange rate from chargestate fluctuations could be comparable to direct electron-ion collisions. Thismechanism is, however, predicted to exhibit a complex dependence on thetemperature and ionization state of the plasma, which could contribute to ourunderstanding of significant variation in experimental measurements ofequilibration times.

Journal article

Danson CN, White M, Barr JRM, Bett T, Blyth P, Bowley D, Brenner C, Collins RJ, Croxford N, Dangor AEB, Devereux L, Dyer PE, Dymoke-Bradshaw A, Edwards CB, Ewart P, Ferguson AI, Girkin JM, Hall DR, Hanna DC, Harris W, Hillier DI, Hooker CJ, Hooker SM, Hopps N, Hull J, Hunt D, Jaroszynski DA, Kempenaars M, Kessler H, Knight PL, Knight S, Knowles A, Lewis CLS, Lipton KS, Littlechild A, Littlechild J, Maggs P, Malcolm GPA, Mangles SPD, Martin W, McKenna P, Moore RO, Morrison C, Najmudin Z, Neely D, New GHC, Norman MJ, Paine T, Parker AW, Penman RR, Pert GJ, Pietraszewski C, Randewich A, Rizvi NH, Seddon N, Sheng Z-M, Slater D, Smith RA, Spindloe C, Taylor R, Thomas G, Tisch JWG, Wark JS, Webb C, Wiggins SM, Willford D, Winstone Tet al., 2021, A history of high-power laser research and development in the United Kingdom, High Power Laser Science and Engineering, Vol: 9, Pages: 1-86, ISSN: 2095-4719

The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.

Journal article

Albert F, Couprie ME, Debus A, Downer MC, Faure J, Flacco A, Gizzi LA, Grismayer T, Huebl A, Joshi C, Labat M, Leemans WP, Maier AR, Mangles SPD, Mason P, Mathieu F, Muggli P, Nishiuchi M, Osterhoff J, Rajeev PP, Schramm U, Schreiber J, Thomas AGR, Vay J-L, Vranic M, Zeil Ket al., 2021, 2020 roadmap on plasma accelerators, New Journal of Physics, Vol: 23, Pages: 1-34, ISSN: 1367-2630

Plasma-based accelerators use the strong electromagnetic fields that can be supported by plasmas to accelerate charged particles to high energies. Accelerating field structures in plasma can be generated by powerful laser pulses or charged particle beams. This research field has recently transitioned from involving a few small-scale efforts to the development of national and international networks of scientists supported by substantial investment in large-scale research infrastructure. In this New Journal of Physics 2020 Plasma Accelerator Roadmap, perspectives from experts in this field provide a summary overview of the field and insights into the research needs and developments for an international audience of scientists, including graduate students and researchers entering the field.

Journal article

Assmann RW, Weikum MK, Akhter T, Alesini D, Alexandrova AS, Anania MP, Andreev NE, Andriyash I, Artioli M, Aschikhin A, Audet T, Bacci A, Barna IF, Bartocci S, Bayramian A, Beaton A, Beck A, Bellaveglia M, Beluze A, Bernhard A, Biagioni A, Bielawski S, Bisesto FG, Bonatto A, Boulton L, Brandi F, Brinkmann R, Briquez F, Brottier F, Bruendermann E, Buescher M, Buonomo B, Bussmann MH, Bussolino G, Campana P, Cantarella S, Cassou K, Chance A, Chen M, Chiadroni E, Cianchi A, Cioeta F, Clarke JA, Cole JM, Costa G, Couprie M-E, Cowley J, Croia M, Cros B, Crump PA, D'Arcy R, Dattoli G, Del Dotto A, Delerue N, Del Franco M, Delinikolas P, De Nicola S, Dias JM, Di Giovenale D, Diomede M, Di Pasquale E, Di Pirro G, Di Raddo G, Dorda U, Erlandson AC, Ertel K, Esposito A, Falcoz F, Falone A, Fedele R, Ferran Pousa A, Ferrario M, Filippi F, Fils J, Fiore G, Fiorito R, Fonseca RA, Franzini G, Galimberti M, Gallo A, Galvin TC, Ghaith A, Ghigo A, Giove D, Giribono A, Gizzi LA, Gruener FJ, Habib AF, Haefner C, Heinemann T, Helm A, Hidding B, Holzer BJ, Hooker SM, Hosokai T, Huebner M, Ibison M, Incremona S, Irman A, Iungo F, Jafarinia FJ, Jakobsson O, Jaroszynski DA, Jaster-Merz S, Joshi C, Kaluza M, Kando M, Karger OS, Karsch S, Khazanov E, Khikhlukha D, Kirchen M, Kirwan G, Kitegi C, Knetsch A, Kocon D, Koester P, Kononenko OS, Korn G, Kostyukov I, Kruchinin KO, Labate L, Le Blanc C, Lechner C, Lee P, Leemans W, Lehrach A, Li X, Li Y, Libov V, Lifschitz A, Lindstrom CA, Litvinenko V, Lu W, Lundh O, Maier AR, Malka V, Manahan GG, Mangles SPD, Marcelli A, Marchetti B, Marcouille O, Marocchino A, Marteau F, Martinez de la Ossa A, Martins JL, Mason PD, Massimo F, Mathieu F, Maynard G, Mazzotta Z, Mironov S, Molodozhentsev AY, Morante S, Mosnier A, Mostacci A, Mueller A-S, Murphy CD, Najmudin Z, Nghiem PAP, Nguyen F, Niknejadi P, Nutter A, Osterhoff J, Oumbarek Espinos D, Paillard J-L, Papadopoulos DN, Patrizi B, Pattathil R, Pellegrino L, Petralia A, Petrillo V, Piersanti L, Pocsai MAet al., 2021, Erratum to: EuPRAXIA Conceptual Design Report, European Physical Journal: Special Topics, Vol: 229, Pages: 11-31, ISSN: 1951-6355

Journal article

Streeter M, Najmudin Z, Shalloo R, Gruse J-Net al., 2020, Automation and control of laser wakefield accelerators using Bayesian optimisation, Nature Communications, Vol: 11, Pages: 1-8, ISSN: 2041-1723

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.

Journal article

Gruse J-N, Streeter MJV, Thornton C, Armstrong CD, Baird CD, Bourgeois N, Cipiccia S, Finlay OJ, Gregory CD, Katzir Y, Lopes NC, Mangles SPD, Najmudin Z, Neely D, Pickard LR, Potter KD, Rajeev PP, Rusby DR, Underwood CID, Warnett JM, Williams MA, Wood JC, Murphy CD, Brenner CM, Symes DRet al., 2020, Application of compact laser-driven accelerator X-ray sources for industrial imaging, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, Vol: 983, Pages: 1-7, ISSN: 0168-9002

X-rays generated by betatron oscillations of electrons in a laser-driven plasma accelerator were charac-terised and applied to imaging industrial samples. With a125TWlaser, a low divergence beam with5.2 ± 1.7 × 107photonsmrad−2per pulse was produced with a synchrotron spectrum with a critical energy of14.6 ± 1.3keV. Radiographs were obtained of a metrology test sample, battery electrodes, and a damage sitein a composite material. These results demonstrate the suitability of the source for non-destructive evaluationapplications. The potential for industrial implementation of plasma accelerators is discussed.

Journal article

Assmann RW, Weikum MK, Akhter T, Alesini D, Alexandrova AS, Anania MP, Andreev NE, Andriyash I, Artioli M, Aschikhin A, Audet T, Bacci A, Barna IF, Bartocci S, Bayramian A, Beaton A, Beck A, Bellaveglia M, Beluze A, Bernhard A, Biagioni A, Bielawski S, Bisesto FG, Bonatto A, Boulton L, Brandi F, Brinkmann R, Briquez F, Brottier F, Brundermann E, Buscher M, Buonomo B, Bussmann MH, Bussolino G, Campana P, Cantarella S, Cassou K, Chance A, Chen M, Chiadroni E, Cianchi A, Cioeta F, Clarke JA, Cole JM, Costa G, Couprie M-E, Cowley J, Croia M, Cros B, Crump PA, D'Arcy R, Dattoli G, Del Dotto A, Delerue N, Del Franco M, Delinikolas P, De Nicola S, Dias JM, Di Giovenale D, Diomede M, Di Pasquale E, Di Pirro G, Di Raddo G, Dorda U, Erlandson AC, Ertel K, Esposito A, Falcoz F, Falone A, Fedele R, Ferran Pousa A, Ferrario M, Filippi F, Fils J, Fiore G, Fiorito R, Fonseca RA, Franzini G, Galimberti M, Gallo A, Galvin TC, Ghaith A, Ghigo A, Giove D, Giribono A, Gizzi LA, Gruener FJ, Habib AF, Haefner C, Heinemann T, Helm A, Hidding B, Holzer BJ, Hooker SM, Hosokai T, Huebner M, Ibison M, Incremona S, Irman A, Iungo F, Jafarinia FJ, Jakobsson O, Jaroszynski DA, Jaster-Merz S, Joshi C, Kaluza M, Kando M, Karger OS, Karsch S, Khazanov E, Khikhlukha D, Kirchen M, Kirwan G, Kitegi C, Knetsch A, Kocon D, Koester P, Kononenko OS, Korn G, Kostyukov I, Kruchinin KO, Labate L, Le Blanc C, Lechner C, Lee P, Leemans W, Lehrach A, Li X, Li Y, Libov V, Lifschitz A, Lindstrom CA, Litvinenko V, Lu W, Lundh O, Maier AR, Malka V, Manahan GG, Mangles SPD, Marcelli A, Marchetti B, Marcouille O, Marocchino A, Marteau F, Martinez de la Ossa A, Martins JL, Mason PD, Massimo F, Mathieu F, Maynard G, Mazzotta Z, Mironov S, Molodozhentsev AY, Morante S, Mosnier A, Mostacci A, Mueller A-S, Murphy CD, Najmudin Z, Nghiem PAP, Nguyen F, Niknejadi P, Nutter A, Osterhoff J, Oumbarek Espinos D, Paillard J-L, Papadopoulos DN, Patrizi B, Pattathil R, Pellegrino L, Petralia A, Petrillo V, Piersanti L, Pocsai MA Pet al., 2020, EuPRAXIA conceptual design report, European Physical Journal: Special Topics, Vol: 229, Pages: 3675-4284, ISSN: 1951-6355

This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. EuPRAXIA is the first European project that develops a dedicated particle accelerator research infrastructure based on novel plasma acceleration concepts and laser technology. It focuses on the development of electron accelerators and underlying technologies, their user communities, and the exploitation of existing accelerator infrastructures in Europe. EuPRAXIA has involved, amongst others, the international laser community and industry to build links and bridges with accelerator science — through realising synergies, identifying disruptive ideas, innovating, and fostering knowledge exchange. The Eu-PRAXIA project aims at the construction of an innovative electron accelerator using laser- and electron-beam-driven plasma wakefield acceleration that offers a significant reduction in size and possible savings in cost over current state-of-the-art radiofrequency-based accelerators. The foreseen electron energy range of one to five gigaelectronvolts (GeV) and its performance goals will enable versatile applications in various domains, e.g. as a compact free-electron laser (FEL), compact sources for medical imaging and positron generation, table-top test beams for particle detectors, as well as deeply penetrating X-ray and gamma-ray sources for material testing. EuPRAXIA is designed to be the required stepping stone to possible future plasma-based facilities, such as linear colliders at the high-energy physics (HEP) energy frontier. Consistent with a high-confidence approach, the project includes measures to retire risk by establishing scaled technology demonstrators. This report includes preliminary models for project implementation, cost and schedule that would allow operation of the full Eu-PRAXIA facili

Journal article

Baggott R, Rose S, Mangles S, 2020, Calculating opacity in hot, dense matter using second-order electron-photon and two-photon transitions to approximate line broadening, Physical Review Letters, Vol: 125, Pages: 145002 – 1-145002 – 5, ISSN: 0031-9007

Calculations of the opacity of hot, dense matter require models for plasma line broadening. How-ever, the most general theories are too complex to calculate directly and some approximation is inevitably required. The most widely-used approaches focus on the line centre, where a Lorentzian shape is obtained. Here, we demonstrate that in the opposite limit, far from the line centre, the opacity can be expressed in terms of second-order transitions, such as electron-photon and two-photon processes. We suggest that this insight could form the basis for a new approach to improve calculations of opacity in hot, dense matter. Preliminary calculations suggest that this approach could yield increased opacity away from absorption lines.

Journal article

Shalloo RJ, Mangles SPD, 2020, Faster laser pulses boost plasma accelerators, NATURE PHOTONICS, Vol: 14, Pages: 470-471, ISSN: 1749-4885

Journal article

Bloom MS, Streeter MJV, Kneip S, Bendoyro RA, Cheklov O, Cole JM, Doepp A, Hooker CJ, Holloway J, Jiang J, Lopes NC, Nakamura H, Norreys PA, Rajeev PP, Symes DR, Schreiber J, Wood JC, Wing M, Najmudin Z, Mangles SPDet al., 2020, Bright X-ray radiation from plasma bubbles in an evolving laser wakefield accelerator

We show that the properties of the electron beam and bright X-rays producedby a laser wakefield accelerator can be predicted if the distance over whichthe laser self-focuses and compresses prior to self-injection is taken intoaccount. A model based on oscillations of the beam inside a plasma bubble showsthat performance is optimised when the plasma length is matched to the laserdepletion length. With a 200~TW laser pulse this results in an X-ray beam withmedian photon energy of 20 keV, $> 10^{9}$ photons per shot and a peakbrightness of $4 \times 10^{23}$ photons s$^{-1}$ mrad$^{-2}$ mm$^{-2}$ (0.1 %BW)$^{-1}$.

Working paper

Mangles S, 2020, Bright x-ray radiation from plasma bubbles in an evolving laser wakefield accelerator, Physical Review Accelerators and Beams, Vol: 23, Pages: 061301 – 1-061301 – 6, ISSN: 2469-9888

We show that the properties of the electron beam and bright x rays produced by a laser wakefield accelerator can be predicted if the distance over which the laser self-focuses and compresses prior to self-injection is taken into account. A model based on oscillations of the beam inside a plasma bubble shows that performance is optimized when the plasma length is matched to the laser depletion length. With a 200 TW laser pulse, this results in an x-ray beam with a median photon energy of 20 keV, >6×108  photons above 1 keV per shot, and a peak brightness of 3×1022  photons s−1 mrad−2 mm−2 (0.1%  BW)−1.

Journal article

Blackburn TG, Gerstmayr E, Mangles SPD, Marklund Met al., 2020, Model-independent inference of laser intensity, PHYSICAL REVIEW ACCELERATORS AND BEAMS, Vol: 23, ISSN: 2469-9888

Journal article

Behm K, Hussein AE, Zhao TZ, Baggott RA, Cole JM, Hill E, Krushelnick K, Maksimchuk A, Nees J, Rose SJ, Thomas AGR, Watt R, Wood JC, Yanovsky V, Mangles SPDet al., 2020, Demonstration of femtosecond broadband X-rays from laser wakefield acceleration as a source for pump-probe X-ray absorption studies, High Energy Density Physics, Vol: 35, Pages: 1-5, ISSN: 1574-1818

We present X-ray absorption measurements near the K-edge of laser heated aluminum in a pump-probe configuration using X-rays generated in a laser wakefield accelerator. A 30 fs duration laser pulse from the Herculeslaser system was split into two beamlines, with one used to heat a 4 µm thickness Al foil and the second to drive a laser wakefield accelerator. The laser-heated plasma was probed at various pump-probe delays using the femtosecond duration X-rays generated by betatron oscillations of the electrons in the wakefield. We observe an apparent blue-shift of the K-edge occurring on a sub-picosecond timescale in the transmission spectra.

Journal article

Schwab MB, Siminos E, Heinemann T, Ullmann D, Karbstein F, Kuschel S, Saevert A, Yeung M, Hollatz D, Seidel A, Cole J, Mangles SPD, Hidding B, Zepf M, Skupin S, Kaluza MCet al., 2020, Visualization of relativistic laser pulses in underdense plasma, PHYSICAL REVIEW ACCELERATORS AND BEAMS, Vol: 23, ISSN: 2469-9888

Journal article

Hussein AE, Senabulya N, Ma Y, Streeter MJV, Kettle B, Dann SJD, Albert F, Bourgeois N, Cipiccia S, Cole JM, Finlay O, Gerstmayr E, González IG, Higginbotham A, Jaroszynski DA, Falk K, Krushelnick K, Lemos N, Lopes NC, Lumsdon C, Lundh O, Mangles SPD, Najmudin Z, Rajeev PP, Schlepütz CM, Shahzad M, Smid M, Spesyvtsev R, Symes DR, Vieux G, Willingale L, Wood JC, Shahani AJ, Thomas AGRet al., 2020, Author Correction: Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures, Scientific Reports, Vol: 10, ISSN: 2045-2322

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Journal article

Kettle B, Gerstmayr E, Streeter MJV, Albert F, Baggott RA, Bourgeois N, Cole JM, Dann S, Falk K, Gallardo González I, Hussein AE, Lemos N, Lopes NC, Lundh O, Ma Y, Rose SJ, Spindloe C, Symes DR, Šmíd M, Thomas AGR, Watt R, Mangles SPDet al., 2019, Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source, Physical Review Letters, Vol: 123, Pages: 254801-1-254801-6, ISSN: 0031-9007

Single-shot absorption measurements have been performed using the multi-keV x rays generated by a laser-wakefield accelerator. A 200 TW laser was used to drive a laser-wakefield accelerator in a mode which produced broadband electron beams with a maximum energy above 1 GeV and a broad divergence of ≈15  mrad FWHM. Betatron oscillations of these electrons generated 1.2±0.2×106  photons/eV in the 5 keV region, with a signal-to-noise ratio of approximately 300∶1. This was sufficient to allow high-resolution x-ray absorption near-edge structure measurements at the K edge of a titanium sample in a single shot. We demonstrate that this source is capable of single-shot, simultaneous measurements of both the electron and ion distributions in matter heated to eV temperatures by comparison with density functional theory simulations. The unique combination of a high-flux, large bandwidth, few femtosecond duration x-ray pulse synchronized to a high-power laser will enable key advances in the study of ultrafast energetic processes such as electron-ion equilibration.

Journal article

Hoarty DJ, Morton J, Jeffery M, Pattison LK, Wardlow A, Mangles SPD, Rose SJ, Iglesias C, Opachich K, Heeter RF, Perry TSet al., 2019, A proposal to measure iron opacity at conditions close to the solar convective zone-radiative zone boundary, High Energy Density Physics, Vol: 32, Pages: 70-76, ISSN: 1574-1818

A major problem in stellar modelling is the discrepancy between solar models and helioseismology data in the position of the convective zone-radiative zone boundary in the sun. This could be explained by a large uncertainty in the calculated opacity data and recent experimental data on iron using the Sandia National Laboratory Z facility have shown large differences, up to a factor of 4, between measurement and prediction at plasma conditions close to the convective zone-radiative zone boundary. This paper describes a proposal for a radiative burn-through experiment to be fielded on NIF to observe if a radiation wave transit through a Fe2O3 sample is consistent with the factor of 2-4 change in the iron opacity seen in the Z experiments. A target design and the diagnostic method are described. A detailed radiation-hydrodynamic model has been used to generate synthetic results and explore the sensitivities and experimental accuracy needed for the proposed measurement.

Journal article

Arran C, Cole JM, Gerstmayr E, Blackburn TG, Mangles SPD, Ridgers CPet al., 2019, Optimal parameters for radiation reaction experiments, Plasma Physics and Controlled Fusion, Vol: 61, Pages: 1-12, ISSN: 0741-3335

As new laser facilities are developed with intensities on the scale of ${10}^{22}\mbox{--}{10}^{24}\,{\rm{W}}\,{\mathrm{cm}}^{-2}$, it becomes ever more important to understand the effect of strong field quantum electrodynamic processes, such as quantum radiation reaction, which will play a dominant role in laser-plasma interactions at these intensities. Recent all-optical experiments, where GeV electrons from a laser wakefield accelerator encountered a counter-propagating laser pulse with a 0 > 10, have produced evidence of radiation reaction, but have not conclusively identified quantum effects nor their most suitable theoretical description. Here we show the number of collisions and the conditions required to accomplish this, based on a simulation campaign of radiation reaction experiments under realistic conditions. We conclude that while the critical energy of the photon spectrum distinguishes classical and quantum-corrected models, a better means of distinguishing the stochastic and deterministic quantum models is the change in the electron energy spread. This is robust against shot-to-shot fluctuations and the necessary laser intensity and electron beam energies are already available. For example, we show that so long as the electron energy spread is below 25%, collisions at a 0 = 10 with electron energies of $500\,\mathrm{MeV}$ could differentiate between different quantum models in under 30 shots, even with shot-to-shot variations at the 50% level.

Journal article

Baird CD, Murphy CD, Blackburn TG, Ilderton A, Mangles SPD, Marklund M, Ridgers CPet al., 2019, Realising single-shot measurements of quantum radiation reaction in high-intensity lasers, New Journal of Physics, Vol: 21, ISSN: 1367-2630

Modern laser technology is now sufficiently advanced that collisions between high-intensity laser pulses and laser-wakefield-accelerated (LWFA) electron beams can reach the strong-field regime, so that it is possible to measure the transition between the classical and quantum regimes of light–matter interactions. However, the energy spectrum of LWFA electron beams can fluctuate significantly from shot to shot, making it difficult to clearly discern quantum effects in radiation reaction (RR), for example. Here we show how this can be accomplished in only a single laser shot. A millimetre-scale pre-collision drift allows the electron beam to expand to a size larger than the laser focal spot and develop a correlation between transverse position and angular divergence. In contrast to previous studies, this means that a measurement of the beam's energy-divergence spectrum automatically distinguishes components of the beam that hit or miss the laser focal spot and therefore do and do not experience RR.

Journal article

Gould O, Mangles S, Rajantie A, Rose S, Xie Cet al., 2019, Observing thermal Schwinger pair production, Physical Review A, Vol: 99, ISSN: 1050-2947

We study the possibility of observing Schwinger pair production enhanced by a thermal bath of photons. We consider the full range of temperatures and electric field intensities from pure Schwinger production to pure thermal production, and identify the most promising and interesting regimes. In particular, we identify temperatures of ∼ 20 keV/kB and field intensities of ∼ 10²³ W cm¯² where pair production would be observable. In this case, the thermal enhancement over the Schwinger rate is exponentially large and due to effects which are not visible at any finite order in the loop expansion. Pair production in this regime can thus be described as more nonperturbative than the usual Schwinger process, which appears at one loop. Unfortunately, such high temperatures appear to be out of reach of foreseeable technologies, though nonthermal photon distributions with comparable energy densities are possible. We suggest the possibility that similar nonperturbative enhancements may extend out of equilibrium and propose an experimental scheme to test this.

Journal article

Dann SJD, Baird CD, Bourgeois N, Chekhlov O, Eardley S, Gregory CD, Gruse J-N, Hah J, Hazra D, Hawkes SJ, Hooker CJ, Krushelnick K, Manles SPD, Marshall VA, Murphy CD, Najmudin Z, Nees JA, Osterhoff J, Parry B, Pourmoussavi P, Rahul S, Rajeev PP, Rozario S, Scott JDE, Smith RA, Springate E, Tang Y, Tata S, Thomas AGR, Thornton C, Symes DR, Streeter MJet al., 2019, Laser wakefield acceleration with active feedback at 5 Hz, Physical Review Accelerators and Beams, Vol: 22, ISSN: 2469-9888

We describe the use of a genetic algorithm to apply active feedback to a laser wakefield accelerator at a higher power (10 TW) and a lower repetition rate (5 Hz) than previous work. The temporal shape of the drive laser pulse was adjusted automatically to optimize the properties of the electron beam. By changing the software configuration, different properties could be improved. This included the total accelerated charge per bunch, which was doubled, and the average electron energy, which was increased from 22 to 27 MeV. Using experimental measurements directly to provide feedback allows the system to work even when the underlying acceleration mechanisms are not fully understood, and, in fact, studying the optimized pulse shape might reveal new insights into the physical processes responsible. Our work suggests that this technique, which has already been applied with low-power lasers, can be extended to work with petawatt-class laser systems.

Journal article

Hussein AE, Senabulya N, Ma Y, Streeter MJV, Kettle B, Dann SJD, Albert F, Bourgeois N, Cipiccia S, Cole JM, Finlay O, Gerstmayr E, Gonzalez IG, Higginbotham A, Jaroszynski DA, Falk K, Krushelnick K, Lemos N, Lopes NC, Lumsdon C, Lundh O, Mangles SPD, Najmudin Z, Rajeev PP, Schleputz CM, Shahzad M, Smid M, Spesyvtsev R, Symes DR, Vieux G, Willingale L, Wood JC, Shahani AJ, Thomas AGRet al., 2019, Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures, Scientific Reports, Vol: 9, Pages: 1-13, ISSN: 2045-2322

Laser-wakefield accelerators (LWFAs) are high acceleration-gradient plasma-based particle accelerators capable of producing ultra-relativistic electron beams. Within the strong focusing fields of the wakefield, accelerated electrons undergo betatron oscillations, emitting a bright pulse of X-rays with a micrometer-scale source size that may be used for imaging applications. Non-destructive X-ray phase contrast imaging and tomography of heterogeneous materials can provide insight into their processing, structure, and performance. To demonstrate the imaging capability of X-rays from an LWFA we have examined an irregular eutectic in the aluminum-silicon (Al-Si) system. The lamellar spacing of the Al-Si eutectic microstructure is on the order of a few micrometers, thus requiring high spatial resolution. We present comparisons between the sharpness and spatial resolution in phase contrast images of this eutectic alloy obtained via X-ray phase contrast imaging at the Swiss Light Source (SLS) synchrotron and X-ray projection microscopy via an LWFA source. An upper bound on the resolving power of 2.7 ± 0.3 μm of the LWFA source in this experiment was measured. These results indicate that betatron X-rays from laser wakefield acceleration can provide an alternative to conventional synchrotron sources for high resolution imaging of eutectics and, more broadly, complex microstructures.

Journal article

Turcu ICE, Shen B, Neely D, Sarri G, Tanaka KA, McKenna P, Mangles SPD, Yu T-P, Luo W, Zhu X-L, Yin Yet al., 2019, Quantum electrodynamics experiments with colliding petawatt laser pulses, High Power Laser Science and Engineering, Vol: 7, ISSN: 2095-4719

A new generation of high power laser facilities will provide laser pulses with extremely high powers of 10 petawatt (PW)and even 100 PW, capable of reaching intensities of 1023W/cm2in the laser focus. These ultra-high intensities arenevertheless lower than the Schwinger intensityIS=2.3×1029W/cm2at which the theory of quantum electrodynamics(QED) predicts that a large part of the energy of the laser photons will be transformed to hard Gamma-ray photonsand even to matter, via electron–positron pair production. To enable the investigation of this physics at the intensitiesachievable with the next generation of high power laser facilities, an approach involving the interaction of two collidingPW laser pulses is being adopted. Theoretical simulations predict strong QED effects with colliding laser pulses of>10 PW focused to intensities>1022W/cm2.

Journal article

Weikum MK, Akhter T, Alesini D, Alexandrova AS, Anania MP, Andreev NE, Andriyash IA, Aschikhin A, Assmann RW, Audet T, Bacci A, Barna IF, Beaton A, Beck A, Beluze A, Bernhard A, Bielawski S, Bisesto FG, Brandi F, Brinkmann R, Bruendermann E, Buescher M, Bussmann MH, Bussolino G, Chance A, Chen M, Chiadroni E, Cianchi A, Clarke JA, Cole J, Couprie ME, Croia M, Cros B, Crump PA, Dattoli G, Del Dotto A, Delerue N, De Nicola S, Dias JM, Dorda U, Fedele R, Pousa AF, Ferrario M, Filippi F, Fiore G, Fonseca RA, Galimberti M, Gallo A, Ghaith A, Giove D, Giribono A, Gizzi LA, Gruener FJ, Habib AF, Haefner C, Heinemann T, Hidding B, Holzer BJ, Hooker SM, Hosokai T, Huebner M, Irman A, Jafarinia FJ, Jaroszynski DA, Joshi C, Kaluza M, Kando M, Karger OS, Karsch S, Khazanov E, Khikhlukha D, Knetsch A, Kocon D, Koester P, Kononenko OS, Korn G, Kostyukov I, Kruchinin KO, Labate L, Le Blanc C, Lechner C, Leemans W, Lehrach A, Li X, Libov V, Lifschitz A, Litvinenko V, Lu W, Lundh O, Maier AR, Malka V, Manahan GG, Mangles SPD, Marchetti B, de la Ossa AM, Martins JL, Mason PD, Massimo F, Mathieu F, Maynard G, Mazzotta Z, Molodozhentsev AY, Mostacci A, Mueller A-S, Murphy CD, Najmudin Z, Nghiem PAP, Nguyen F, Niknejadi P, Osterhoff J, Espinos DO, Papadopoulos DN, Patrizi B, Petrillo V, Pocsai MA, Poder K, Pompili R, Pribyl L, Pugacheva D, Rajeev PP, Romeo S, Conti MR, Rossi AR, Rossmanith R, Roussel E, Sahai AA, Sarri G, Schaper L, Scherkl P, Schramm U, Schroeder CB, Scifo J, Serafini L, Sheng ZM, Siders C, Silva LO, Silva T, Simon C, Sinha U, Specka A, Streeter MJV, Svystun EN, Symes D, Szwaj C, Tauscher GE, Terzani D, Thompson N, Toci G, Tomassini P, Torres R, Ullmann D, Vaccarezza C, Vannini M, Vieira JM, Villa F, Wahlstrom C-G, Walczak R, Walker PA, Wang K, Welsch CP, Wiggins SM, Wolfenden J, Xia G, Yabashi M, Zhu J, Zigler Aet al., 2019, Status of the Horizon 2020 EuPRAXIA conceptual design study, 10th International Particle Accelerator Conference (IPAC), Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Weikum MK, Akhter T, Alesini PD, Alexandrova AS, Anania MP, Andreev NE, Andriyash I, Aschikhin A, Assmann RW, Audet T, Bacci A, Barna IF, Beaton A, Beck A, Beluze A, Bernhard A, Bielawski S, Bisesto FG, Brandi F, Bringer O, Brinkmann R, Bruendermann E, Buescher M, Bussmann M, Bussolino GC, Chance A, Chanteloup JC, Chen M, Chiadroni E, Cianchi A, Clarke J, Cole J, Couprie ME, Croia M, Cros B, Crump P, Dattoli G, Delerue N, Delferriere O, Delinikolas P, De Nicola S, Dias J, Dorda U, Fedele R, Pousa AF, Ferrario M, Filippi F, Fils J, Fiore G, Fonseca RA, Galimberti M, Gallo A, Garzella D, Gastinel P, Giove D, Giribono A, Gizzi LA, Gruener FJ, Habib AF, Heinemann T, Hidding B, Holzer BJ, Hooker SM, Hosokai T, Huebner M, Irman A, Jafarinia F, Jaroszynski DA, Jaster-Merz S, Joshi C, Kaluza MC, Kando M, Karger OS, Karsch S, Khazanov E, Khikhlukha D, Knetsch A, Kocon D, Koester P, Kononenko O, Korn G, Kostyukov I, Kruchinin K, Labate L, Lechner C, Leemans WP, Lehrach A, Li FY, Li X, Libov V, Lifschitz A, Litvinenko V, Lu W, Lundh O, Maier AR, Malka V, Manahan GG, Mangles SPD, Marchetti B, Marocchino A, de la Ossa AM, Martins JL, Mason P, Massimo F, Mathieu F, Maynard G, Mazzotta Z, Mehrling TJ, Molodozhentsev AY, Mostacci A, Mueller AS, Murphy CD, Najmudin Z, Nghiem PAP, Nguyen F, Niknejadi P, Osterhoff J, Papadopoulos D, Patrizi B, Petrillo V, Pocsai MA, Poder K, Pompili R, Pribyl L, Pugacheva D, Romeo S, Rajeev PP, Conti MR, Rossi AR, Rossmanith R, Roussel E, Sahai AA, Sarri G, Schaper L, Scherkl P, Schramm U, Schroeder CB, Schwindling J, Scifo J, Serafini L, Sheng ZM, Silva LO, Silva T, Simon C, Sinha U, Specka A, Streeter MJ, Svystun EN, Symes D, Szwaj C, Tauscher G, Terzani D, Thompson N, Toci G, Tomassini P, Torres R, Ullmann D, Vaccarezza C, Vannini M, Vieira JM, Villa F, Wahlstrom C-G, Walczak R, Walker PA, Wang K, Welsch CP, Wolfenden J, Xia G, Yabashi M, Yu L, Zhu J, Zigler Aet al., 2019, EuPRAXIA - A Compact, Cost-Efficient Particle and Radiation Source, 25th International Conference on the Application of Accelerators in Research and Industry (CAARI), Publisher: AMER INST PHYSICS, ISSN: 0094-243X

Conference paper

Spesyvtsev R, Brunetti E, Vieux G, Shahzad M, Maitrallain A, Yoffe S, Ersfeld B, Kornaszewski A, Streeter MJ, Finlay O, Ma Y, Kettle B, Dann SJD, Albert F, Bourgeois N, Cipiccia S, Cole JM, Gerstmayr E, Gonzalez IG, Higginbotham A, Hussein AE, Falk K, Krushelnick K, Lemos N, Lopes NC, Lumsdon C, Lundh O, Mangles SPD, Najmudin Z, Rajeev PP, Smid M, Symes DR, Thomas AGR, Jaroszynski DAet al., 2019, Generation of electron high energy beams with a ring-like structure by a dual stage laser wakefield accelerator, Conference on Relativistic Plasma Waves and Particle Beams as Coherent and Incoherent Radiation Sources III, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

Conference paper

Arran C, Cole JM, Gerstmayr E, Blackburn TG, Mangles SPD, Ridgers CPet al., 2019, Potential to measure quantum effects in recent all-optical radiation reaction experiments, Conference on Research Using Extreme Light - Entering New Frontiers with Petawatt-Class Lasers IV, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

Conference paper

Warwick JR, Alejo A, Dzelzainis T, Schumaker W, Doria D, Romagnani L, Poder K, Cole JM, Yeung M, Krushelnick K, Mangles SPD, Najmudin Z, Samarin GM, Symes D, Thomas AGR, Borghesi M, Sarri Get al., 2018, General features of experiments on the dynamics of laser-driven electron-positron beams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol: 909, Pages: 95-101, ISSN: 0168-9002

The experimental study of the dynamics of neutral electron–positron beams is an emerging area of research, enabled by the recent results on the generation of this exotic state of matter in the laboratory. Electron–positron beams and plasmas are believed to play a major role in the dynamics of extreme astrophysical objects such as supermassive black holes and pulsars. For instance, they are believed to be the main constituents of a large number of astrophysical jets, and they have been proposed to significantly contribute to the emission of gamma-ray bursts and their afterglow. However, despite extensive numerical modelling and indirect astrophysical observations, a detailed experimental characterisation of the dynamics of these objects is still at its infancy. Here, we will report on some of the general features of experiments studying the dynamics of electron–positron beams in a fully laser-driven setup.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00234867&limit=30&person=true