Imperial College London

Professor Tim Green, FREng

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Academic Leader for Sustainability, Professor
 
 
 
//

Contact

 

+44 (0)20 7594 6171t.green Website CV

 
 
//

Location

 

1107EElectrical EngineeringSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

424 results found

Mian S, Judge P, Junyent Ferre A, Green Tet al., 2021, A delta-connected Modular Multilevel STATCOM with partially-rated energy storage for provision of ancillary services, IEEE Transactions on Power Delivery, Vol: 36, Pages: 2893-2903, ISSN: 0885-8977

This paper proposes a delta-connected Modular Multilevel STATCOM with partially rated storage (PRS-STATCOM), capable of providing both reactive and active power support. The purpose is to provide short-term energy storage enabled grid support services such as inertial and frequency response, either alongside or temporarily instead of standard STATCOM voltage support. The topology proposed here contains two types of sub-modules (SM) in each phase-leg: standard sub-modules (STD-SMs) and energy storage element sub-modules (ESE-SMs) with a dc-dc interface converter between the SM capacitor and the ESE. A control structure has been developed that allows energy transfer between the SM capacitor and the ESE resulting in active power exchange between the converter and the grid. Injecting 3rd harmonic current into the converter waveforms can be used to increase the amount of power that can be extracted from the ESE-SMs and so reduce the required ESE-SMs fraction in each phase-leg. Simulation results demonstrate that for three selected active power ratings, 1 up, 2/3 pu, & 1/3 pu, the fraction of SMs that need be converted to ESE-SMs are only 69%, 59% & 38%. Thus, the proposed topology is effective in adding real power capability to a STATCOM without a large increase in equipment cost.

Journal article

Green T, Xiang X, Gu Y, yang Q, Zhang X, Li W, He Xet al., 2021, Resonant modular multilevel DC-DC converters for both high and low step-ratio connections in MVDC distribution systems, IEEE Transactions on Power Electronics, Vol: 36, Pages: 7625-7640, ISSN: 0885-8993

DC transformers based on power electronics are keyitems of equipment for medium voltage dc (MVDC) distributionsystems. Both high and low step-ratio dc-dc conversions arerequired to interface dc links at different voltages to form anintegrated dc distribution system. The transformer-coupledresonant modular multilevel dc-dc converter (RMMC) is wellsuited to high step-ratio connection between a MVDC network anda low voltage dc (LVDC) network but it is not suitable in low stepratio conversion for linking two MVDC networks with similar butnot identical voltages. This paper presents a circuit evolution of thehigh step-ratio transformer-coupled RMMC into its low step-ratiotransformer-less RMMC counterpart. These two RMMCsshare thesame structure and the same resonant process within the resonantSM stack (RSS) giving rise to the same operational advantages. Also,the circuit design experience can be readily transferred from one tothe other. From these two base RMMC circuits, a family of RMMCswith further configurations is elaborated that provide a wider varietyof connection optionsfor MVDC distribution systems. In this circuitfamily, each high step-ratio transformer-coupled RMMC has a lowstep-ratio transformer-less RMMC counterpart and one can betransformed into the other via the circuit evolution processpresented. The theoretical analysis for both high and low stepratio RMMCs has been verified through full-scale simulations ofmedium voltage examples and further verified through downscaled experiments on laboratory prototypes.

Journal article

Xiang X, Fan S, Gu Y, Ming W, Wu J, Li W, He X, Green TCet al., 2021, Comparison of cost-effective distance for LFAC with HVAC and HVDC in connections of offshore and remote onshore wind energy, CSEE Journal of Power and Energy Systems, Vol: 7, Pages: 954-975, ISSN: 2096-0042

For cost-effective connection of large-scalelong-distance wind energy, low frequency alternating current(LFAC) transmission scheme (16.7 Hz or 20 Hz) has beenproposed as an alternative to the conventional high voltagealternating current (HVAC) transmission scheme (50 Hz or 60 Hz)and recently popular high voltage direct current (HVDC)transmission scheme (0 Hz). The technical feasibility of LFACsystem has been demonstrated but the basis for identifying thedistance ranges for which LFAC would be preferable to HVACand HVDC has not been established and the dependence of thisrange on factors such as power transfer rating, voltage rating andcable/line type has not been investigated. This paper presents anin-depth analysis for the overall cost of LFAC system and thenprovides an extensive comparison with HVAC and HVDC, toexplore the distance ranges over which LFAC is cost-effectiveover both HVAC and HVDC in connections of offshore andremote onshore wind energy. The results demonstrate that LFACsystem does possess ranges in the intermediate distance for whichit is more cost-effective than both HVAC and HVDC, and itsoverall cost advantage is generally larger in the overhead line(OHL) connection of remote onshore wind energy than the cableconnection of offshore wind energy.

Journal article

Zhu Y, Gu Y, Li Y, Green Tet al., 2021, Participation analysis in impedance models: the grey-box approach for power system stability, IEEE Transactions on Power Systems, Vol: 37, Pages: 343-353, ISSN: 0885-8950

This paper develops a grey-box approach to small-signal stability analysis of complex power systems that facilitates root-cause tracing without requiring disclosure of the full details of the internal control structure of apparatus connected to the system. The grey-box enables participation analysis in impedance models, which is popular in power electronics and increasingly accepted in power systems for stability analysis. The Impedance participation factor is proposed and defined in terms of the residue of the whole-system admittance matrix. It is proved that, the so defined impedance participation factor equals the sensitivity of the whole-system eigenvalue with respect to apparatus impedance. The classic state participation factor is related to the impedance participation factor via a chain-rule. Based on the chain-rule, a three-layer grey-box approach, with three degrees of transparency, is proposed for root-cause tracing to different depths, i.e. apparatus, states, and parameters, according to the available information. The association of impedance participation factor with eigenvalue sensitivity points to the re-tuning that would stabilize the system. The impedance participation factor can be measured in the field or calculated from the black-box impedance spectra with little prior knowledge required.

Journal article

Aunedi M, Wills K, Green T, Strbac Get al., 2021, Net-zero GB electricity: cost-optimal generation and storage mix, Great Britain's electricity generation capacity mix for net-zero carbon emissions, Publisher: Energy Futures Lab

Report

Oulis Rousis A, Tzelepis D, Pipelzadeh Y, Strbac G, Booth CD, Green TCet al., 2021, Provision of Voltage Ancillary Services Through Enhanced TSO-DSO Interaction and Aggregated Distributed Energy Resources, IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, Vol: 12, Pages: 897-908, ISSN: 1949-3029

Journal article

Carmichael R, Gross R, Hanna R, Rhodes A, Green Tet al., 2021, The Demand Response Technology Cluster: accelerating UK residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools, Renewable and Sustainable Energy Reviews, Vol: 139, ISSN: 1364-0321

Cost-effectively decarbonising the power sector and household energy use using variable renewable energy will require that electricity consumption becomes much more flexible and responsive to constraints in supply and the distribution network. In recent years residential demand response (DR) has received increasing attention that has sought to answer, based on current evidence, questions about how much consumers will engage with DR. This paper critically reviews the evidence base for residential consumer engagement with DR and draws out several important limitations in it. We argue for a more action- oriented focus on developing practical strategies to enable and unlock greater loadshifting and consumer engagement with DR within a changing technology and regulatory context. A number of recommendations are put forward for accelerating UK consumer engagement with DR, presented under three broad strategies: (a) promote awareness of smart tariffs, smart meters and storage and automation behind-the-meter devices as mutually-supportive components within a common ‘DR technology cluster’; (b) deliver targeted support for adoption of electric vehicles and other storage and automation technologies; (c) enable and support informed adoption of DR-enabling products and services through ‘smarter’ digital comparison tools (DCTs), data portability, and faster, simpler switching. The interdependency between components within this DR technology cluster delivers efficiency but also poses a risk that one delayed component (e.g., smart metering) will hold-up policy and industry support for other components. The urgency of decarbonisation goals makes it necessary to push forward as many of these elements as possible rather than the pace being set by the slowest.

Journal article

Heath T, Barnes M, Judge PD, Chaffey G, Clemow P, Green TC, Green PR, Wylie J, Konstantinou G, Ceballos S, Pou J, Belhaouane MM, Zhang H, Guillaud X, Andrews Jet al., 2021, Cascaded- and modular-multilevel converter laboratory test system options: a review, IEEE Access, Vol: 9, Pages: 44718-44737, ISSN: 2169-3536

The increasing importance of cascaded multilevel converters (CMCs), and the sub-category of modular multilevel converters (MMCs), is illustrated by their wide use in high voltage DC connections and in static compensators. Research is being undertaken into the use of these complex pieces of hardware and software for a variety of grid support services, on top of fundamental frequency power injection, requiring improved control for non-traditional duties. To validate these results, small-scale laboratory hardware prototypes are often required. Such systems have been built by many research teams around the globe and are also increasingly commercially available. Few publications go into detail on the construction options for prototype CMCs, and there is a lack of information on both design considerations and lessons learned from the build process, which will hinder research and the best application of these important units. This paper reviews options, gives key examples from leading research teams, and summarizes knowledge gained in the development of test rigs to clarify design considerations when constructing laboratory-scale CMCs.

Journal article

Green T, Liu H, Li B, Wen W, Zhang J, Ning Z, Chen Let al., 2021, Ultra-fast current differential protection with high-sensitivity for HVDC transmission lines, International Journal of Electrical Power and Energy Systems, Vol: 126, ISSN: 0142-0615

Protection of transmission lines is the most important defense against faults in multi-terminal HVDC system. Up until now, no single protection can balance the operation speed and sensitivity needed for all fault types. To solve this problem, a novel current differential protection for HVDC transmission line is proposed in this paper. The intrinsic properties of a HVDC transmission line are analyzed first. Then, essence of ideal current differential protection is revealed and fundamental relations between line models and performance degradation of existing differential protections are discussed. Based on this analysis, a novel current differential protection scheme, including fault detection and faulty pole selection, is developed, and Bergeron model is used to describe the electrical wave propagation process along line, resulting in only simple computations are needed in each calculation cycle. Finally, a simulation model of Wudongde ± 800 kV HVDC project in China is established in PSCAD/EMTDC for verification. By discussing diversified faults and transient processes, simulation results prove that regardless of fault type, distance and transition impedance, the proposed differential protection can respond correctly. Main contribution of this paper is reducing the operation time of differential protection from hundreds of milliseconds to several milliseconds.

Journal article

Ge P, Zhu Y, Green TC, Teng Fet al., 2021, Resilient secondary voltage control of islanded microgrids: an ESKBF-based distributed fast terminal sliding mode control approach, IEEE Transactions on Power Systems, Vol: 36, Pages: 1059-1070, ISSN: 0885-8950

This paper proposes a distributed secondary voltage control method based on extended state Kalman-Bucy filter (ESKBF) and fast terminal sliding mode (FTSM) control for the resilient operation of an islanded microgrid (MG) with inverter-based distributed generations (DGs). To tackle the co-existence of multiple uncertainties, a unified modelling framework is proposed to represent the set of different types of disturbances, including parameter perturbation, measurement noise, and immeasurably external variables, by an extended state method. Kalman-Bucy filter is then applied to accurately estimate the state information of the extended DG model. In addition, based on the accurate estimation, a fast terminal sliding mode (FTSM) surface with terminal attractors is designed to maintain the system stability and accelerate the convergence of consensus tracking, which significantly improves the performance of secondary voltage control under both normal and plug-and-play operation. Finally, case studies are conducted in both MATLAB/Simulink and an experimental testbed to demonstrate the effectiveness of the proposed method.

Journal article

Li Y, Yunjie G, Yue Z, Junyent-Ferre A, Xin X, Green TCet al., 2021, Impedance circuit model of grid-forming inverter: visualizing control algorithms as circuit elements, IEEE Transactions on Power Electronics, Vol: 36, Pages: 3377-3395, ISSN: 0885-8993

The impedance model is widely used for analyzing power converters. However, the output impedance is an external representation of a converter system, i.e., it compresses the entire dynamics into a single transfer function with internal details of the interaction between states hidden. As a result, there are no programmatic routines to link each control parameter to the system dynamic modes and to show the interactions among them, which makes the designers rely on their experience and heuristic to interpret the impedance model and its implications. To overcome these obstacles, this paper proposes a new modeling tool named as impedance circuit model, visualizing the closed-loop power converter as an impedance circuit with discrete circuit elements rather than an all-in-one impedance transfer function. It can reveal the virtual impedance essence of all control parameters at different impedance locations and/or within different frequency bandwidths, and show their interactions and coupling effects. A grid-forming voltage-source inverter (VSI) is investigated as an example, with considering its voltage controller, current controller, control delay, voltage/current dq-frame cross-decoupling terms, output-voltage/current feedforward control, droop controllers, and three typical virtual impedances. The proposed modeling tool is validated by frequency-domain spectrum measurement and time-domain step response in simulations and experiments.

Journal article

Bashar E, Rogers D, Wu R, Ran L, Jennings M, Green TC, Mawby Pet al., 2021, A new protection scheme for an SSSC in an MV network by using a varistor and thyristors, IEEE Transactions on Power Delivery, Vol: 36, Pages: 102-113, ISSN: 0885-8977

To control power flow and manage fault level in meshed MV networks, back-to-back voltage source converters (B2B-VSCs) are being used. However, their high cost and relatively low efficiency are of concerns. Partially rated series compensators, such as SSSCs or UPFCs, are desired but come with the challenge of protecting the device during grid faults. Their potential of use has been limited in comparison with the fully rated back-to-back converters. This paper proposes a new system topology including thyristor crowbars and a varistor to protect the SSSC in an MV network and improve the reliability and flexibility of the network operation. Using the proposed method, the time required for isolating the series compensator from the grid is reduced from at least 20 ms, corresponding to the interruption time of conventional circuit breakers, down to 3 μs in the worst case in addition to the grid fault detection delay. The performance is evaluated by simulation. A small-scale single-phase prototype operating at 230 V/16 A is tested in order to demonstrate the concept.

Journal article

Gu Y, Li Y, Green TC, Zhu Yet al., 2021, Impedance-based whole-system modeling for a composite grid via embedding of frame dynamics, IEEE Transactions on Power Systems, Vol: 36, Pages: 336-345, ISSN: 0885-8950

The paper establishes a methodology to overcome the difficulty of dynamic frame alignment and system separation in impedance modeling of ac grids, and thereby enables impedance-based whole-system modeling of generator-converter composite power systems. The methodology is based on a frame-dynamics-embedding transformation via an intermediary steady frame between local and global frames, which yields a locally defined impedance model for each generator or converter that does not rely on a global frame but retains all frame dynamics. The individual impedance model can then be readily combined into a whole-system model even for meshed networks via the proposed closed-loop formulation without network separation. Compared to start-of-the-art impedance-based models, the proposed method retains both frame dynamics and scalability, and is generally applicable to various network topologies (meshed, radial, etc) and combinations of machines (generators, motors, converters, etc). The methodology is used to analyze the dynamic interaction between generators and converters in a composite grid, which yields important findings and potential solutions for unstable oscillation caused by PLL-swing coupling in low-inertia grids.

Journal article

Xiang X, Gu Y, Chen K, Astolfi A, Green Tet al., 2021, On the dynamics of inherent balancing of modular multilevel DC-AC-DC converters, IEEE Transactions on Power Electronics, Vol: 36, Pages: 34-40, ISSN: 0885-8993

Modular multilevel dc–ac–dc converters (MMDACs) serve as an enabler for dc distribution systems. The modular multilevel structure enables flexible voltage transforms, but raises issues over balancing of the submodule (SM) capacitor voltages. This letter focuses on the dynamics of inherent balancing of MMDACs under circulant modulation. We provide an invariance-like result using a variant of Barbalat's Lemma and prove that the SM capacitor voltages converge to the kernel of the circulant switching matrix, which is the intersection of the invariant sets for each switching state. We further interpret the balancing dynamics as a permuted linear time-invariant system and prove that the envelop of the balancing trajectories is governed by the eigenvalues of the permuted state-transition matrix. This result extends previous full-rank criterion for inherent balancing in a steady state and provides new insight into the dynamic behavior of MMDACs.

Journal article

Perez-Olvera J, Green TC, Junyent-Ferre A, 2021, Self-learning Control for Active Network Management, 14th IEEE Madrid PowerTech Conference (IEEE POWERTECH), Publisher: IEEE

Conference paper

Wang J, Xu W, Gu Y, Song W, Green TCet al., 2021, Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks, 35th Conference on Neural Information Processing Systems (NeurIPS), Publisher: NEURAL INFORMATION PROCESSING SYSTEMS (NIPS), ISSN: 1049-5258

Conference paper

Xiang X, Zhang X, Gu Y, Chaffey G, Green Tet al., 2020, Analysis and investigation of internal AC Frequency to minimize AC current magnitude and reactive power circulation in chain-link modular multilevel direct DC-DC converters, IEEE Transactions on Circuits and Systems Part 1: Regular Papers, Vol: 67, Pages: 5586-5599, ISSN: 1549-8328

Chain-link modular multilevel direct dc-dc converters (CLMMCs) have attracted much interest recently in for dc power systems because they achieve higher device utilization, lower power losses and they are physically more compact than the alternative front-to-front modular multilevel dc-ac-dc converters (FFMMCs). The CLMMCs rely on circulating an internal ac current to manage energy balance of the sub-module (SM) stacks but this current inevitably contributes to extra current stresses for circuit components and can also lead to excess reactive power circulation within the converter. This paper presents a circuit analysis that there exists a frequency value for the internal ac components that may minimize the current stresses and avoid excessive reactive power circulation. For illustration, the circuit analysis is applied to one of the base formats, the buck-boost CLMMC as an example. The key relationship between the CLMMC and the standard dc-ac modular multilevel converter is explored and established. The equivalent circuits for their dc and ac components with consideration of SM capacitance and SM voltage ripples are created and analyzed in detail, and a full derivation is provided for the specific ac frequency. From this example, this analytical method is extended and applied to other base formats of CLMMCs. The theoretical analysis and results are verified by a set of full-scale simulation examples and down-scaled experiments on a laboratory prototype.

Journal article

Leterme W, Judge PD, Green TC, 2020, Analysis of DC-side fault response of MMCs with controlled fault blocking capability for different transmission line types, 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), Publisher: IEEE, Pages: 1-9

MMCs with controlled fault blocking capability retain control of their currents during a dc-side fault, thereby reducing the required interruption capabilities for switchgear. To design the dc-side control to achieve this capability, it is important to take into account the interaction between the converter control and the transmission line during a short-circuit on the transmission line. This paper uses a dc-side equivalent model to assess the interactions of the converter control for two types of converters, i.e., full-bridge and hybrid, with two main types of transmission lines, i.e., cable and overhead line, during dc-side faults. In general, the dc-side voltages and currents for a full-bridge MMC connected to an overhead line show more oscillatory behavior compared to an MMC connected to a cable. Furthermore, a hybrid MMC connected to an overhead line may provide a more damped dc-side fault response due to its limited negative voltage capability.

Conference paper

Shao W, Wu R, Ran L, Jiang H, Mawby PA, Rogers DJ, Green TC, Coombs T, Yardley K, Kastha D, Bajpai P, Zhou Let al., 2020, A Power Module for Grid Inverter With In-Built Short-Circuit Fault Current Capability, IEEE TRANSACTIONS ON POWER ELECTRONICS, Vol: 35, Pages: 10567-10579, ISSN: 0885-8993

Journal article

Li Y, Gu Y, Green TC, 2020, Interpreting frame transformations in AC systems as diagonalization of harmonic transfer functions, IEEE Transactions on Circuits and Systems I: Regular Papers, Vol: 67, Pages: 2481-2491, ISSN: 1549-8328

Analysis of ac electrical systems can be performed via frame transformations in the time-domain or via harmonic transfer functions (HTFs) in the frequency-domain. The two approaches each have unique advantages but are hard to reconcile because the coupling effect in the frequency-domain leads to infinite dimensional HTF matrices that need to be truncated. This paper explores the relation between the two representations and shows that applying a frame transformation on the input-output signals creates a direct equivalence to a similarity transformation to the HTF matrix of the system. Under certain conditions, such similarity transformations have a diagonalizing effect which, essentially, reduces the HTF matrix order from infinity to two or one, making the matrix tractable mathematically without truncation or approximation. This theory is applied to a droop-controlled voltage source inverter as an illustrative example. A stability criterion is derived in the frequency-domain which agrees with the conventional state-space model but offers greater insights into the mechanism of instability in terms of the negative damping (non-passivity) under droop control. Therefore, the paper not only establishes a unified view in theory but also offers an effective practical tool for stability assessment.

Journal article

Collins C, Green T, 2020, Comparative analysis of an MV neutral point clamped AC-CHB converter with DC fault ride-through capability, IEEE Transactions on Industrial Electronics, Vol: 67, Pages: 2834-2843, ISSN: 0278-0046

The AC side cascaded H-bridge converter with a two-level main bridge has previously been proposed as a fault tolerant converter for HVDC. This paper explores the benefits of replacing the two-level bridge with a neutral point clamped three-level (NPC) bridge for MVDC applications and defines the optimum operating conditions for this case. By modifying the topology to include an NPC main bridge, the peak stack voltage during normal operation is decreased considerably which results in a 58% reduction in the required number of sub-modules (SM), thereby significantly increasing efficiency. However, this sacrifices the fault ride-through capability as the stacks are no longer able to support the AC voltage and thus two new SM topologies are proposed. The proposed topologies function as single full-bridges with two capacitors in parallel during normal operation. Under fault conditions, the SMs divide into two series connected full-bridges to enable DC fault ride-through. Reverse-blocking IGCTs or ultra-fast mechanical switches are used to bypass the IGBTs which are unused in normal operation and therefore the topology maintains a high efficiency. Simulation results are shown, and the proposed topologies are compared with more conventional designs in terms of efficiency, energy storage requirement and device count.

Journal article

Qiao Y, Zhang X, Xiang X, Yang X, Green Tet al., 2020, Trapezoidal Current Modulation for Bidirectional High-Step-Ratio Modular DC–DC Converters, IEEE Transactions on Power Electronics, Vol: 35, Pages: 3402-3415, ISSN: 0885-8993

Modular dc-dc converter (MDCC) has been proposed for high step-ratio interconnection in dc grid applications.To further optimize the performance of MDCC, this paperpresents a trapezoidal current modulation with bidirectionalpower flow ability. By giving all the sub-module (SM) capacitorsan equal duty to withstand the stack dc voltage, their voltages arebalanced without additional feedback control. Moreover, basedon soft-switching performance and circulating current analysis,three-level and two-level operation modes featured with highefficiency conversion and large power transmission, respectively,are introduced. The control schemes of both modes are designedto minimize the conduction losses. Besides, the SM capacitorvoltage ripples with different switching patterns are comparedand the option for ripple minimization is presented. A full-scalecase study is provided to introduce the design process and deviceselection of the MDCC. The experimental tests based on a downscaled prototype are finally presented to validate the theoreticalanalysis.

Journal article

Sang Y, Junyent Ferre A, Green TC, 2020, Operational principles of three-phase single active bridge DC/DC converters under duty cycle control, IEEE Transactions on Power Electronics, Vol: 35, Pages: 8737-8750, ISSN: 0885-8993

Single Active Bridge (SAB) DC/DC converters are attractive options for unidirectional DC/DC conversion in future medium power generation applications, offering galvanic isolation and a diode-based output side. SAB DC/DC converters must be controlled by adjusting the active bridge switching duty cycle, unlike Dual Active Bridge (DAB) converters where the phase-shift angle control is normally used. This paper presents a comprehensive analysis of the operational principles of three-phase SAB (3p-SAB) DC/DC converters that arise from different duty cycle operation ranges. Moreover, the converter performances such as transformer harmonic currents are analyzed and are compared between different input and output DC voltage conditions. Finally, an experimental validation using a small scale prototype is presented.

Journal article

Zhao Z, Yang P, Bottrell N, Lai LL, Green TCet al., 2020, Dynamic modeling, sensitivity assessment, and design of VSC-based microgrids with composite loads, Journal of Power Electronics, Vol: 20, Pages: 245-259, ISSN: 1598-2092

© 2019, The Korean Institute of Power Electronics. Microgrids are seen as useful for increasing the flexibility of distribution networks and integrating large amounts of distributed generations. Ensuring the dynamic stability of power converter-dominated microgrids that is robust to a range of load conditions is a significant challenge and essential for ensuring reliability. Induction motor (IM) loads are widespread and have substantial impacts on the dynamic behavior and stability characteristics of low-inertia microgrids. The stability assessment and design of microgrids considering composite loads have not been sufficiently addressed in the current literature, where static loads are commonly used to simplify the modeling and analysis. In this paper, the dynamic stability of voltage source converter-based microgrids is investigated, considering composite loads as dynamic element. A complete state-space model of the microgrid with both IM load and static load is developed. Participation factor analysis is conducted to identify the contribution of the composite loads to the dominant oscillatory modes of the microgrid. Furthermore, sensitivity assessment of the dominant eigenvalues is presented to further identify the appropriate ranges of variations in the control parameters, operating conditions and operating points of the microgrid. It is shown that composite loads in a realistic microgrid significantly affect the dominant oscillatory modes and, consequently, the system stability margin. Ignoring the composite load dynamics in microgrid stability studies may lead to misleading analytical results. Simulations based on MATLAB/Simulink and experimental tests based on a laboratory prototype microgrid are implemented to demonstrate the theoretical analysis.

Journal article

Xiang X, Qiao Y, Gu Y, Zhang X, Green Tet al., 2020, Analysis and criterion for inherent balance capability in modular multilevel DC-AC-DC converters, IEEE Transactions on Power Electronics, Vol: 35, Pages: 5573-5580, ISSN: 0885-8993

Modular multilevel dc-ac-dc converters (MMDAC) have emergedrecently for high step-ratio connectionsin medium voltage distribution systems.Extended phase-shiftmodulation has been proposed and was found to create the opportunity for inherent balance of SM capacitor voltages. This letter presents fundamentalanalysis leading toclear criterion for the inherent balancecapability in MMDAC. A sufficient and necessary condition,with associated assumptions,to guarantee this capability isestablished. Using the mathematics of circulant matrices, this condition is simplified to a co-prime criterion which gives rise to practical guidance for the design of an MMDAC. Experimentson down-scaled prototypesand simulations on full-scale examples both provide verification of the analysis and criterion for the inherent balance capability of MMDAC.

Journal article

Sanchez-Sanchez E, Junyent-Ferre A, Prieto-Araujo E, Gomis-Bellmunt O, Green Tet al., 2020, Modelling and experimental validation of a laboratory-scaled HVDC cable emulator tested in an MMC-based platform, 22nd European Conference on Power Electronics and Applications (EPE ECCE Europe), Publisher: IEEE, ISSN: 2325-0313

Conference paper

Perez-Olvera J, Green TC, Junyent-Ferre A, 2020, Active network management in LV networks: a case study in the UK, IEEE-Power-and-Energy-Society General Meeting (PESGM), Publisher: IEEE, ISSN: 1944-9925

Conference paper

Pozo C, Limleamthong P, Guo Y, Green T, Shah N, Acha S, Sawas A, Wu C, Siegert M, Guillén-Gosálbez Get al., 2019, Temporal sustainability efficiency analysis of urban areas via data envelopment analysis and the hypervolume indicator: Application to London boroughs, Journal of Cleaner Production, Vol: 239, Pages: 1-14, ISSN: 0959-6526

Transitioning towards a more sustainable society calls for systematic tools to assess the sustainability performance of urban systems. To perform this task effectively, this work introduces a novel method based on the combined use of Data Envelopment Analysis (DEA) and the hypervolume indicator. In essence, DEA is applied to (i) distinguish between efficient and inefficient urban systems through the identification of best practices; and to (ii) establish improvement targets for the inefficient urban systems that, if attained, would make them efficient. Meanwhile, the hypervolume indicator is employed in conjunction with DEA to evaluate how urban systems evolve with time. The capabilities of this approach are illustrated through its application to the sustainability assessment of London boroughs between 2012–2014. Results reveal that most boroughs tend to perform well in terms of the indicators selected, with 20–25 of the 32 boroughs found efficient depending on the year. Regarding the temporal assessment, a global improvement in sustainability performance was found, with a strong relationship between the boroughs’ performances and their locations. The method proposed opens new pathways of social and environmental research for the application of advanced multi-criteria decision-support tools in the assessment and optimisation of urban systems.

Journal article

Judge PD, Chaffey G, Wang M, Dejene FZ, Beerten J, Green TC, Van Hertem D, Leterme Wet al., 2019, Power-system level classification of voltage-source HVDC converter stations based upon DC fault handling capabilities, IET Renewable Power Generation, Vol: 13, Pages: 2899-2912, ISSN: 1752-1416

To date, numerous concepts for converter station designs for use in voltage source converter (VSC)-based high-voltage direct current (HVDC) systems have been proposed. These differ not only in converter circuit topology, sub-module design, and control scheme but also in AC-or-DC switchgear and other auxiliary equipment. In the main, the existing literature categorises these converter stations according to just the converter circuit technologies and controls. However, for the development of network codes and to enable systematic network studies, a system-focused and technology-independent classification is needed. As such a classification does not yet exist, this study proposes a new framework, which categorises VSC station designs according to their capabilities during a DC-side fault and the method by which post-fault restoration may be achieved, given that these are the main differentiating factors from a system perspective. The classification comprises six converter station types and three time-intervals through which to fully characterise a design. Many well-known forms of converters are used as case studies, and simulation results are used to exemplify the classification framework. The outcome is a generic and technology-independent way of characterising converter station designs that is useful in wider power-system analysis but also for putting proposed converter stations into context.

Journal article

Leterme W, Judge PD, Wylie J, Green TCet al., 2019, Modeling of MMCs with controlled DC fault blocking capability for DC protection studies, IEEE Transactions on Power Electronics, Vol: 35, Pages: 5753-5769, ISSN: 0885-8993

The fault current characteristics in dc systemsdepend largely on the response, and hence also the topology,of the ac-dc converters. The presently used ac-dc convertertopologies may be categorized into those with controlled oruncontrolled fault blocking capability and those lacking suchcapability. For the topologies of the former category, genericmodels of the dc-side fault response have not yet been developedand a characterization of the influence of control and sensordelays is a notable omission. Therefore, to support accurate andcomprehensive dc system protection studies, this paper presentsthree reduced converter models and analyzes the impact of keyparameters on the dc-side fault response. The models retainaccurate representation of the dc-side current control, but differin representation of the ac-side and internal current controldynamics, and arm voltage limits. The models were verifiedagainst a detailed (full-switched) simulation model for the casesof a full-bridge and a hybrid modular multilevel converter, andvalidated against experimental data from a lab-scale prototype.The models behave similarly in the absence of arm voltage limits,but only the most detailed of the three retains a high degree ofaccuracy when these limits are reached.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00152987&person=true&page=2&respub-action=search.html