
Symplectic Representation Theory: Sheet 1

Travis Schedler

February 14, 2019

The starred exercises will be collected on Thursday, 14 Feb, 2019. If you are taking the
course for credit, please attempt these and hand them on on that date.

1. (a) Let G be an algebraic group acting on a variety X. Let a : G × X → X be
the action and p : G × X → X be the second projection. Recall that a sheaf F on
X is G-equivariant if we are given an isomorphism a∗F ' p∗F . Prove that, if F is
G-equivariant, then Γ(X,F) is a G-representation.

(b) Let X = G×H V := (G×V )/H where H < G is a subgroup and V is a variety with
an action of H. Prove that G-equivariant sheaves on X are the same as H-equivariant
sheaves on V . More precisely, the pullbacks under G×V → X and G×V → V induce
equivalences of categories between each of these and (G × H)-equivariant sheaves on
G×V . (Note: in terms of stacks, G-equivariant sheaves on X are, by definition, sheaves
on the stack quotient X/G, so part (b) is just saying that G \ (G× V )/H = V/H.)

(c) Show that the cotangent bundle T ∗G/B is isomorphic to G×B b⊥ where b⊥ ⊆ g∗

is the annihilator of b. Under the Killing form (for G semisimple) this identifies with
G×B n for n = [b, b].

(d) Using (b) and (c), show that every line bundle O(λ) is indeed G-equivariant and
when λ is dominant, compute its global sections.

2. Let G = SLn(C) and g = sln. (For general complex semisimple Lie groups, see, e.g.,
Chriss–Ginzburg, Section 3.)

(a) ? Define the Springer map ρ : T ∗G/B ∼= G ×B b⊥ → g∗, by ρ(g, x) = Ad(g)(x).
First, explain why we can instead define this as

ρ : G×B n→ g, ρ(g, x) = Ad(g)(x).

(More precisely, using the trace pairing g × g → C, (x, y) 7→ Tr(x, y), or the Killing
form, identify b⊥ ∼= n := [b, b] and g ∼= g∗, compatibly with the G action). Next,
with this done, show that the image in g is indeed the subset of ad-nilpotent elements,
called Nil(g). We get a map, called the Springer resolution, ρ : T ∗G/B → Nil(g).

(b) ? Prove that the Springer resolution can also be described as

{(b, x) | x ∈ [b, b], b ⊆ g a Borel} → Nil(g), (b, x) 7→ x.
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You may use the fact, from Lie theory, that all Borel subalgebras of a semisimple Lie
algebra are conjugate and that the normalizer NG(b) is B (although this is easier to
prove for sln than in the general case).

(c) ? Using (b), show that the Springer resolution is projective and birational.

(d) ? The Grothendieck–Springer resolution can be described by ρ : G ×B b → g,
(g, x) 7→ Ad(g)(x). Show that this is surjective. Find the size of the fiber over regu-
lar nilpotent elements and over regular semisimple elements (in both cases, “regular”
means that the centraliser has the minimum dimension, equal to the dimension of a
Cartan subalgebra, called the rank of g; for regular semisimple elements, this is the
same as saying that the image in the adjoint quotient g//G followed by the Chevalley
isomorphism to h/W (the characteristic polynomial map) is a free W = Sn-orbit, i.e.,
one not touching a root hyperplane).

Hint 1: A regular semisimple element here is just a diagonalisable matrix with distinct
eigenvalues. Show that a Borel subalgebra contains such a diagonal matrix if and only
if it contains all diagonal matrices and prove that corresponding flags are invariant
under invertible diagonal matrices (the standard torus).

Hint 2: Show that if you have a regular nilpotent element, then multiplication by this
element determines a complete flag, and that this corresponds to a Borel containing
the element.

(e) ? Similarly to before, prove that the Grothendieck–Springer resolution can also be
described as

{(b, x) | x ∈ b, b ⊆ g a Borel} → g, (b, x) 7→ x.

Deduce that it is also projective. Is it birational?

(f) Consider the commutative diagram,

G×B b
ρ //

q̃

��

g

q

��
h // h/W,

where q̃(g, x) is the image of x in h ∼= b/[b, b], and q is the adjoint quotient map
g→ g//G composed with the Chevalley isomorphism (characteristic polynomial map)
for h/W . Show that the left vertical map q̃ is smooth (in particular having smooth
fibers), and that over the regular locus hreg = {h ∈ h | α(h) 6= 0,∀α ∈ Φ} (with Φ the
set of rots), the horizontal map yields an isomorphism q̃−1(h) ∼= q−1(W · h), i.e., the
diagram restricts to a Cartesian one over the regular locus.

3. (a) ? As discussed in detail in Exercise 5 and referenced exercises, one way to define the
category of DλP1-modules is as the category of graded D(A2)-modules modulo torsion
modules supported at the origin, such that the Euler operator Eu := x∂x + y∂y acts in
degree m as multiplication by m+λ. Prove the Beilinson–Bernstein theorem, that the

2



functor Γ (of “global sections on P1”) which takes a module to its degree zero compo-
nent, is an equivalence of abelian categories DλP1-mod→ Γ(D̂λP1)−mod, provided that

λ is not a negative integer. Here D̂λP2 denotes the DλP1-module D(A2)/D(A2)(Eu−λ),

which has the property that Hom(D̂P1 ,M) = Γ(M) (verify it!): this implies that Γ(M)
is a module over Γ(D̂P1).

(b) Not to hand in: Show that the last algebra is isomorphic to Usl2/(C − 1
2
λ2−λ).

Show that the above generalises from P1 to Pn, putting Eu =
∑n+1

i=1 xi∂xi and replacing
C2 by Cn.

For the next few exercises, one needs the notion of (weakly) equivariant D-modules:
see Exercise 6, or a suitable reference on D-modules (e.g., Section 11.5 of Hotta et al),
for details.

4. Let G = Gm be the multiplicative group (C×), and suppose that it acts on an affine
variety X. Prove the following: (a) the structure of the action is the same as a
Z-grading on X; (b) a G-equivariant sheaf on X is the same thing as a Z-graded
O(X)-module; (c) supposing now X is smooth: a weakly G-equivariant DX-module is
the same thing as a Z-graded D(X)-module (included in this is the fact that D(X) is
Z-graded); (d) still supposing X is smooth, a (strongly) G-equivariant DX-module is
the same thing as a Z-graded D(X) module V such that the Euler vector field Eu acts
by Eu(v) = |v|v for all homogeneous elements v ∈ V ; (e) In the case that X = An

with the usual scaling action, show that the Euler vector field is x1∂1 + · · · + xn∂n.
Note that the grading in this case is by |xi| = 1, |∂i| = −1.

Recollection: The Euler vector field is defined as the image of z∂z ∈ LieG in D(X)
under the action, i.e., the vector field Eu such that Eu(f) = |f |f for all homogeneous
functions f ∈ O(X).

5. If X is a projective variety, then by descent, DX-modules are equivalent to (strongly)
Gm-equivariant DY \{0}-modules, where Y is the affine cone over X. Show that this
category is equivalent to the category of Z-graded D(Y )-modules, such that the Euler
operator acts by multiplication by degree, modulo torsion modules supported at the
origin.

6. Let G be an algebraic group acting on a smooth variety X. Let α : G×X → X be the
action map and p : G×X → X the second projection. One defines a G-equivariant left
D-module, F , on X to be a DX-module F equipped with an isomorphism of left DG×X-
modules, a∗F ∼= p∗F . Similarly, one defines a weakly G-equivariant left D-module to
be the same except that we only require the isomorphism to be one of (OG � DX)-
modules. Prove the following: (a) if X is affine and G is a linear algebraic group, then
a weakly G-equivariant D-module F is the same as a rational G-module V = Γ(X,F)
together with an action of D(X) satisfying, for all g ∈ G,Φ ∈ D(X), and v ∈ V , the
identity g · Φ(v) = (α(g)∗(Φ))(g · v).
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(b) In general, a G-equivariant D-module F is a weakly G-equivariant D-module F
such that, for every ξ ∈ g, the two natural actions of g, via the homomorphism dα :
g → D(X), and via the equivariant structure, g → Der(F), agree. In terms of part
(a), in the affine setting, this says that, for ξ ∈ g, dα(ξ)(v) = ξ · v for all ξ ∈ g, v ∈ V ,
interpreting the left-hand side as the action via dα(ξ) ∈ D(X) and the right-hand side
as the action via the equivariant structure.

Recollections for the above problem: See, e.g., Hotta et al, Section 1.3, for the definition
of the pullback of a D-module: this is the same as the O-module pullback but one
must define the D-module structure. Briefly, f ∗F = OX ⊗f−1OY

f−1F , with the DX-
module structure defined by allowing vector fields ξ ∈ TX to act locally by ξ(ψ ⊗ s) =
ξ(ψ)⊗s+ψ⊗f∗ξ(s). Here, f∗ξ(s) makes sense since, if s is a section over an open subset
U ⊆ X, then it corresponds to a section s̃ over f(U) (more precisely, over open subsets
containing f(U)), and we set f∗ξ(s)(x) = (f∗ξ|x)(s̃). Recall in part (a) that a rational
G-module is a comodule over the bialgebra O(G), or equivalently, a filtered union of
finite-dimensional vector spaces W equipped with algebraic maps G → GL(W ); also,
α(g)∗(Φ) ∈ D(X) is defined by α(g)∗(Φ)(ψ) = α(g)∗(Φ(α(g−1)∗(ψ))).
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