
Symplectic Representation Theory: Sheet 1

Travis Schedler

April 11, 2019

Apologies for the delay in posting this assignment.
The starred exercises should be handed in in time for you to receive credit for the course,

or by Friday, 3 May, whichever is earlier.
All vector spaces and algebraic varieties (and schemes) are over C.

1. ? Beilinson–Bernstein with symmetries. Let G be a semisimple algebraic group and g
its Lie algebra. For any subgroup H < G, with Lie algebra h ⊆ g, we can consider the
category of (weakly or strongly) H-equivariant D-modules on the flag variety G/B:
see Sheet 1 and Hotta et al for the relevant definitions. Let DH(G/B) be the category
of strongly H-equivariant DG/B-modules.

Recall that a Harish-Chandra (g, H)-module is a g-module together with an action of
the group H such that the induced actions of h are identical.

Example 1. (Not needed for the problem.) This includes the theory of (unitary) real
representations, in the case where G = G′C, the complexification of a real reductive
group G′, with maximal compact subgroup K ′ < G, and H := K ′C: namely, unitary
real representations are equivalent to unitary (g, H)-modules (for more general repre-
sentations, some inequivalent real representations can yield equivalent (g, H)-modules,
and those that do are called “infinitesimally equivalent”).

(a) If H is connected, prove that the action of H on a Harish-Chandra (g, H)-module
is uniquely determined. Deduce that the Harish-Chandra modules form a full
subcategory of all g-modules in this case.

(b) Prove that the Beilinson–Bernstein equivalence induces another equivalence, from
DH(G/B) to the category of Harish-Chandra (g, H)-modules with the same cen-
tral character as the trivial representation.

(c) Generalize to arbitrary central characters for which the Beilinson–Bernstein equiv-
alence holds.

2. ? Given a du Val singularity C2/Γ, we can form a resolution via

HilbΓ(C2) := {Z ⊆ C2 a subscheme | O(Z) ∼= C[Γ] as Γ-representations} ⊆ Hilb|Γ|(C2).
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In the case Γ = Z/n, explicitly verify that the locus of subschemes in HilbZ/n(C2)
concentrated at the origin consists of n−1 copies of P1 glued together, with intersection
graph given by the diagram An−1.

3. Given an algebraic group G with a finite-dimensional representation V , we call K < G
a parabolic subgroup if there exists a vector v ∈ V such that StabG(v) = K.

Let K < G be a parabolic subgroup and v ∈ V with StabG(v) = K.

If G is finite, show that a formal neighborhood of G · v ∈ V/G is isomorphic to
V/V K × V K/K.

If moreoever V is symplectic and G < Sp(V ), conclude that, V/G admits a symplectic
resolution, so does V K/K.

(Bonus: Using Luna’s slice theorem (see e.g., Drezet’s notes on the subject), show
that the same result holds if G is reductive and we replace ordinary quotients by
Hamiltonian reductions.)

4. Let A be an algebra and e ∈ A an idempotent (e2 = e). Let B := eAe (a subalgebra
of A) and V := eA (a B,A-bimodule).

(i) Prove that EndAop(V ) = B, and that Z(B) = EndB⊗Aop(V ).

(ii) Consider the map φ : Z(A)→ B, a 7→ za. (This is sometimes called the “Satake
map”, after Lusztig and Etingof–Ginzburg.) Show that the image is contained in
Z(B). If A is prime (this means that, for all nonzero a, b ∈ A, then aAb 6= 0: a
noncommutative generalization of integral domain), prove that φ is injective.

(iii) Suppose that the “double centralizer property” holds: EndB(A) = V . Prove that
φ is an isomorphism onto Z(B). Hint: show similarly that EndB⊗Aop(V ) = Z(A).

(iv) Give an example of a prime ring A such that the map φ : Z(A) → Z(B) is not
surjective (and hence the double centralizer property does not hold). Hint: Try
the path algebra of a quiver.

5. ? Symplectic reflection algebras: Given a symplectic vector space (V, ω) and a finite
subgroup G < Sp(V ), we call an element g ∈ G a symplectic reflection if codimV g = 2
(this is the minimum codimension for g 6= 1 since V g is symplectic). Let S ⊆ G be
the subset of symplectic reflections. Given t ∈ C and a conjugation-invariant function
c : G→ C, Drinfeld and Etingof–Ginzburg defined the symplectic reflection algebra:

Ht,c := T (V ) oG/(v ⊗ w − w ⊗ v − tω(v, w)−
∑
s∈S

c(s)ω(πs(v), πs(w)), (2)

where for g ∈ G, πg : V → (V g)⊥ is the orthogonal projection with kernel V g (explicitly,
if gn = 1, then πg(v) = v − 1

n

∑n−1
i=0 g(v)).

Let e ∈ C[G] be the symmetrizer idempotent, e := |G|−1
∑

g∈G g. The subalgebra
eHt,ce is called the spherical symplectic reflection algebra.

2



(a) Prove that, for t = 0 and c = 0, then eHt,ce = O(V/G).

(b) In the simplest case G = C2 < SL2(C), with V = C2, show that eH0,ce is isomor-
phic to the algebra of functions on the locus of trace-zero matrices of determinant
λc, and compute λc as a function of c.

(c) In the same case as before, prove that Ht,c satisfies the PBW property: as a
vector space, we have the decomposition Ht,c

∼= Sym(V ) ⊗ C[G]. Put another
way, we have an algebra isomorphism, gr(Ht,c) ∼= Sym(V ) o C[G] as algebras,
using the filtration generated by |V | = 1 and |G| = 0. Show the same thing for
the spherical subalgebras: gr(eHt,ce) ∼= Sym(V )G (using the subspace filtration).

NOTE: The above holds generally for all G, and implies that Ht,c is a flat deforma-
tion of H0,0, and indeed of Ht0,c0 for any fixed t0, c0, and the same for the spherical
subalgebras. It is a theorem of Etingof–Ginzburg that these deformations are uni-
versal for t0 6= 0. (It follows from Losev’s theorem that a similar statement holds
even at t0 = 0, at least for the spherical subalgebra, if one restricts to Poisson
deformations and quantizations.)

(d) There is a deep result, the double centralizer theorem, that EndeHt,ce(eHt,c) = Ht,c.
It is a theorem of Etingof and Ginzburg that eH0,ce is commutative for all c. Put
together, using also the preceding exercise, show that eH0,ce ∼= Z(H0,c). Give an
example to show this is not true replacing 0 by nonzero t.

Note: The spectrum of eH0,ce ∼= Z(H0,c) is called the generalized Calogero-Moser
space (the ordinary space is the special case G = Sn < GLn < Sp2n).

6. Recall from lectures: it is a consequence of results of Ginzburg–Kaledin and Namikawa
that the quotient V/G, for G < Sp(V ) finite, admits a symplectic resolution if and only
if the generalized Calogero–Moser space Spec eHc(G)e is smooth for some (equivalently,
generic) c. (More generally, one has that a conical symplectic singularity admits a
symplectic resolution if and only if it admits a symplectic smoothing.)

(a) Recover from this result and the preceding exercises that G admits a resolution
only if it is generated by symplectic reflections (sometimes called Verbitsky’s
theorem). Such a group is called a symplectic reflection group.

(b) Now let G be a symplectic reflection group. The representation V is called sym-
plectically irreducible if there does not exist a symplectic subspace U ⊆ V which is
invariant under the group G. (This is weaker than the usual notion of irreducible,
which here can be called “complex irreducible”.)

Prove that, if G < Sp(V ) is a symplectic reflection group, then there is a decom-
position V = V1 ⊕ · · · ⊕ Vm into symplectically irreducible subspaces (the easy
part) and moreover a decomposition G = G1 × · · · × Gm with Gi < Sp(Vi) (the
harder part). Thus V/G ∼=

∏
i Vi/Gi, and the study of such quotients V/G (which

can admit resolutions) reduces to the study of the symplectically irreducible ones.

7. Classification of simply-laced Dynkin and extended Dynkin quivers: a perhaps better
way using the McKay correspondence:
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(a) Let Q be an undirected graph obtained from a subgroup Γ < SL2(C) via the
McKay correspondence (note that a quiver is obtained from this by arbitrarily
orienting the edges). Prove that the adjacency matrix of Q (a symmetric matrix)
A has the vector δ = (dim ρi) as an eigenvector of eigenvalue two, for ρi the
irreducible representations of Γ.

(b) Using the Perron–Frobenius theorem for A (see below for a partial recollection),
prove that the Cartan matrix 2I−A is positive semidefinite (i.e., all the eigenvalues
are at least zero) and that rk(2I − A) = |Q0| − 1 (one less than the number of
rows of the matrix). Deduce that for a proper subquiver, the Cartan matrix is
positive definite.

Recall: in particular, the Perron–Frobenius theorem says that, for a matrix with
nonnegative entries such that the associated graph is (strongly) connected, there is
a unique maximum real eigenvalue, it has multiplicity one, and every eigenvector
with all positive entries has this as its eigenvalue.

(c) Now try to classify all extended Dynkin and Dynkin diagrams in the following
way: by the McKay correspondence, the extended Dynkin diagrams are those
admitting a positive integral vector such that each entry equals one-half the sum
of the adjacent entries. Find all of these, and verify that they recover the extended
ADE diagrams you already knew.

(d) Prove (using the classification) that every graph is either a proper subset of an
extended Dynkin graph or contains an extended Dynkin graph.

(e) Prove furthermore that the Cartan matrix is either positive definite (a proper
subset of an extended Dynkin quiver), positive semidefinite (the extended Dynkin
case), or indefinite (non-Dynkin, non-extended Dynkin). This implies that the
Dynkin diagrams are precisely the proper subsets of extended Dynkin diagrams.

(f) Finally prove that every Dynkin diagram can be obtained uniquely from an ex-
tended Dynkin one by chopping off a vertex where the entry equals one, called an
extending vertex. Show that the symmetries of the diagram act transitively on
the set of extending vertices, which implies that it does not matter which vertex
we chop off.
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