
Algebraic Geometry, Jan–Mar 2021.
These lecture notes are only extremely minor modifications of the notes of

Martin Orr for the 2018 course.

1. Introduction

Practical information about the course.
Lectures will be based on the material below.
The exam will be worth 90 percent of the course; the remaining ten percent will

be awarded based on performance in two assessed courseworks, the deadlines to
be provided soon. Nonassessed problems sheets will also be provided.

Books:
• “Undergraduate algebraic geometry” by Miles Reid
• Chapter 1 of “Algebraic Geometry” by Robin Hartshorne
• “Basic Algebraic Geometry I” by Igor Shafarevich
• “Algebraic Geometry: A first course” by Joe Harris

During the course we will sometimes assume results from commutative algebra.
Books which contain these results (and much much more) include

• “Commutative algebra with a viewpoint toward algebraic geometry” by D.
Eisenbud.
• “Commutative algebra” by Atiyah and Macdonald;
• “Commutative ring theory” by H. Matsumura.

If you are curious to see more advanced (and thorough) treatments of algebraic
geometry, you may look at, e.g., the Stacks project and Ravi Vakil’s “The Rising
Sea” notes online.

Course outline.
(1) Affine varieties – definition, examples, maps between varieties, translating

between geometry and commutative algebra (the Nullstellensatz);
• MaxSpec and Spec (only in the video recordings)

(2) Projective varieties – definition, examples, maps between varieties, rigidity
and images of maps

(3) Dimension – several different definitions (all equivalent, but useful for
different purposes), calculating dimensions of examples

What is not in the course?
(1) Schemes (aside from some nonexaminable words)
(2) Sheaves and cohomology (although you may find this in the module on

Complex Manifolds, and I may insert some nonexaminable comments about
them)

(3) Curves, divisors and the Riemann–Roch theorem
1
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The base field. Let k be an algebraically closed field.
We are going to be thinking about solutions to polynomials, so everything is

much simpler over algebraically closed fields. Number theorists might be interested
in other fields, but you generally have to start by understanding the algebraically
closed case first. In this course we will stop with the algebraically closed case too.

Apart from being algebraically closed, it usually does not matter much which
field we use to do algebraic geometry – except sometimes it matters whether the
characteristic is zero or positive. In this course I will take care to mention results
which depend on the characteristic, and sometimes we might consider only the
characteristic zero case. You will not lose much if you just assume that k = C
throughout the course (except when it will be explicitly something else).

Indeed it is often useful to think about k = C because then you can use your
usual geometric intuition. When I draw pictures on the whiteboard, I am usually
only drawing the real solutions because it is hard to draw shapes in C2. This is
cheating but it is often very useful – the real solutions are not the full picture but
in many cases we can still see the important features there.

Affine space.

Definition. Algebraic geometers write An to mean kn, and call it affine n-space.
You may think of this as just a funny choice of notation, but there are at least

two reasons for it:
(i) When we write kn, it makes us think of a vector space, equipped with

operations of addition and scalar multiplication. But An means just a set of
points, described by coordinates (x1, . . . , xn) with xi ∈ k, without the vector
space structure.

(ii) Because it usually doesn’t matter much what our base field k is (as long as
it is algebraically closed), it is convenient to have notation which does not
prominently mention k.

On occasions when it is important to specify which field k we are using, we
write An

k for affine n-space.
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2. Affine algebraic sets

Definition. An affine algebraic set is a subset V ⊆ An which consists of the
common zeros of some finite set of polynomials f1, . . . , fm with coefficients in k.

More formally, an affine algebraic set is a set of the form

V = {(x1, . . . , xn) ∈ An : f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0}

for some polynomials f1, . . . , fm ∈ k[X1, . . . , Xn].

Examples of affine algebraic sets.

Exercise 2.1. Think of some examples and non-examples of affine algebraic sets.

These are the examples and non-examples you came up with in lectures.

Examples.
(1) The whole space An, defined by the polynomial f1 = 0 (or by the empty

set of polynomials).
(2) The set {2}, defined by the polynomial X − 2. More generally, any point

in A1.
(3) Any union of finitely many affine algebraic sets (see proof below). Combin-

ing with (2), we deduce that any finite subset of A1 is an affine algebraic
set.

(4) An algebraic curve in A2, that is, a set of the form

{(x1, x2) ∈ A2 : f(x1, x2) = 0}

for some polynomial f ∈ k[X1, X2].

Non-examples.
(1) Any infinite subset of A1 (other than A1 itself). This is because a one-

variable polynomial with infinitely many roots must be the zero polynomial.

Here are some additional examples of affine algebraic sets.

Further examples.
(5) Any point in An. The single-point set {(a1, . . . , an)} is defined by the

equations
X1 − a1 = 0, . . . , Xn − an = 0.

Using (3), we see that any finite subset of An is an affine algebraic set.
(6) Embeddings of Am in An where m < n:

{(x1, . . . , xm, 0, . . . , 0) ∈ An} = {(x1, . . . , xn) ∈ An : xm+1 = · · · = xn = 0}.

More generally, the image of a linear map Am → An:

{(x1, . . . , xn) ∈ An : some linear conditions}.
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Further non-example.
Example (6) does not generalise to images of maps where each coordinate is

given by a polynomial. For example, consider the map

φ : A2 → A2 where f(x, y) = (x, xy).

The image of φ is
S = A2 \ {(0, y)} ∪ {(0, 0)}.

To prove that S is not an affine algebraic set, consider a polynomial g(X, Y ) ∈
k[X, Y ] which vanishes on S. For each fixed y ∈ k, the one-variable polynomial
g(X, y) vanishes at all x 6= 0. This implies that g(X, y) is the zero polynomial.
Thus g(x, y) = 0 for all x, y ∈ k2, that is, g is the zero polynomial.

Philosophical remark. This remark might seem obscure for now; we will come back
to it later.

The words “affine variety” mean more or less the same thing as “affine algebraic
set” but there is an ontological difference. “Affine algebraic set“ means a subset
which lives inside An and knows how it lives inside An, while “affine variety” means
an object in its own right which is considered outside of An. I will try to use these
words consistently, but the difference is quite subtle and books may not always
use it consistently. For the first few weeks, we will talk about “affine algebraic
sets” only.

Note that some books (e.g. Reid, Hartshorne) have another difference between
affine varieties and affine algebraic sets – they require varieties to be irreducible
(which we will define next time). Other books (e.g. Shafarevich) do not require
varieties to be irreducible. In this course we will not require varieties to be
irreducible.

Unions and intersections of affine algebraic sets. One of the examples was
a union of finitely many affine algebraic sets. Now we prove that the union of two
affine algebraic sets is an affine algebraic set.

Lemma 2.1. If V,W ⊆ An are affine algebraic sets, then their union V ∪W ⊆ An

is also an affine algebraic set.

Proof. We have to take the product for each possible pair of defining polynomials:
if

V = {(x1, . . . , xn) ∈ An : f1(x) = · · · = fr(x) = 0},
W = {(x1, . . . , xn) ∈ An : g1(x) = · · · = gs(x) = 0},

then

V ∪W = {x ∈ An : fi(x)gj(x) = 0 for all i, j where 1 ≤ i ≤ r, 1 ≤ j ≤ s}.

Note that we really need all the pairs figj, not just for example f1g1, f2g2, etc.
It is obvious that if x ∈ V ∪W , then all the products figj vanish at x.
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The reverse is a little trickier. Suppose that we have x ∈ An satisfying
fi(x)gj(x) = 0 for all i and j. Looking just at f1, we get:

f1g1(x) = 0, so f1(x) = 0 or g1(x) = 0.
f1g2(x) = 0, so f1(x) = 0 or g2(x) = 0.

...
f1gs(x) = 0, so f1(x) = 0 or gs(x) = 0.

Putting these all together, we get
f1(x) = 0 or gj(x) = 0 for every j.

We can do the same thing for f2 to get
f2(x) = 0 or gj(x) = 0 for every j

and so on for each fi. Putting all these together, we get
fi(x) = 0 for every i or gj(x) = 0 for every j.

This says precisely that x ∈ V ∪W . �

It is even easier to check that the intersection of finitely many affine algebraic
sets is an affine algebraic sets: if V is defined by polynomials f1, . . . , fr and W
is defined by polynomials g1, . . . , gs, then V ∩W is simply the set where all the
polynomials in both lists vanish i.e.

V ∩W = {x ∈ An : f1(x) = · · · = fr(x) = 0 and g1(x) = · · · = gs(x) = 0}.

Questions.
(1) Is the union of infinitely many affine algebraic sets always an affine algebraic

set?
(2) Is the intersection of infinitely many affine algebraic sets always an affine

algebraic set?

Revise from Commutative Algebra: ideals, noetherian rings, Hilbert Basis
Theorem.
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3. Intersections and ideals

Answers to questions from previous lecture.
(1) No! The union of infinitely many algebraic sets is not always an affine

algebraic set. (I don’t mean that it is never an affine algebraic set, just that
there exist counter-examples.) Indeed, any subset of An can be written as
a union of single-point sets.

(2) Yes! The intersection of infinitely many algebraic sets is always an affine
algebraic set.

If we try to prove (2) by combining the lists of defining equations, we run into
a problem: in our definition of affine algebraic set we only allowed a finite list of
polynomial equations.

To get round this, we use ideals.

Ideals. Let’s introduce some notation.

Definition. For any set S ⊆ k[X1, . . . , Xn], let

V(S) = {x ∈ An : f(x) = 0 for all f ∈ S}.

Lemma 3.1. If S ⊆ k[X1, . . . , Xn] generates the ideal I, then V(S) = V(I).

Proof. We have S ⊆ I and so it is easy to see that V(I) ⊆ V(S).
Suppose that x ∈ V(S), and f ∈ V(I). Then there are f1, . . . , fm ∈ S and

q1, . . . , qm ∈ k[X1, . . . , Xn] such that

f = q1f1 + · · ·+ qmfm.

Since f1(x) = · · · = fm(x) = 0, it follows that f(x) = 0.
Since this holds for every f ∈ I, x ∈ V(I). �

Using the Hilbert Basis Theorem, we can deduce that the restriction to “finite”
lists of polynomials in the definition of affine algebraic set is unnecessary:

Corollary 3.2. V(S) is an affine algebraic set for any set of polynomials S ⊆
k[X1, . . . , Xn].

Proof. Let I be the ideal in k[X1, . . . , Xn] generated by S. By the Hilbert Basis
Theorem, k[X1, . . . , Xn] is noetherian and so we can choose a finite set {f1, . . . , fm}
which generates I. Then Lemma 3.1 tells us that

V(S) = V(I) = V(f1, . . . , fm). �

Corollary 3.3. The intersection of infinitely many affine algebraic sets is an affine
algebraic set.

Proof. Combine the lists of defining polynomials for all the algebraic sets, and
apply Corollary 3.2. �
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Ideals and algebraic sets: back and forth. We can also go in the other
direction: from affine algebraic sets to ideals.

Definition. If A is any subset of An (usually A will be an affine algebraic set),
we define

I(A) = {f ∈ k[X1, . . . , Xn] : f(x) = 0 for all x ∈ A}.

Note that I(A) is an ideal in k[X1, . . . , Xn].
We have now defined two functions

V : {ideals in k[X1, . . . , Xn]} → {affine algebraic sets in An},
I : {affine algebraic sets in An} → {ideals in k[X1, . . . , Xn]}.

These functions are not inverses of each other. For example, for the ideal
(X2) ⊆ k[X]:

I
(
V
(

(X2)
))

= (X) 6= (X2).
But composing V and I in the other order gives the identity.

Lemma 3.4. If V is an affine algebraic set, then V(I(V )) = V .

Proof. It is clear that V ⊆ V(I(V )) (and this works when V is any subset of An,
not necessarily algebraic).

For the reverse inclusion, we have to use the hypothesis that V is an affine
algebraic set. By the definition of affine algebraic set, V = V(J) for some ideal J ⊆
k[X1, . . . , Xn].

Suppose that y 6∈ V . We shall show that y 6∈ V(I(V )).
Because y 6∈ V = V(J), there exists f ∈ J such that f(y) 6= 0. By definition,

J ⊆ I(V ) and so f ∈ I(V ). Hence f(y) 6= 0 tells us that y 6∈ V(I(V )). �

Chain condition for affine algebraic sets. What is the geometric interpreta-
tion of the Hilbert Basis Theorem?

It is clear that V and I reverse the direction of inclusions. Hence the ascending
chain condition for ideals translates into the descending chain condition for affine
algebraic sets.

Lemma 3.5. Let V1 ⊇ V2 ⊇ V3 ⊇ · · · be a descending chain of affine algebraic
sets in An.

Then there exists N such that Vn = VN for all n > N .

Proof. The fact that
V1 ⊇ V2 ⊇ V3 ⊇ · · ·

implies that
I(V1) ⊆ I(V2) ⊆ I(V3) ⊆ · · · .

Because k[X1, . . . , Xn] is noetherian, there exists N such that I(Vn) = I(VN)
for all n > N . By Lemma 3.4, Vn = V(I(Vn)) for every n and so this proves the
proposition. �
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Statement of the Nullstellensatz. When does I(V(I)) = I? It turns out that
the only reason that this can fail is where elements of the ideal I have n-th roots
which are not in I, just as with the example of I = (X2) where X2 ∈ I has a
square root X which is not in I.

Recall the definition of the radical of an ideal from Commutative Algebra:

Definition. Let I be an ideal in a ring R. The radical of I is
rad I =

√
I = {f ∈ R : ∃n > 0 s.t. fn ∈ I}.

We say that I is a radical ideal if rad I = I.

Theorem 3.6 (Hilbert’s Nullstellensatz). Let I be any ideal in the polynomial
ring k[X1, . . . , Xn] over an algebraically closed field k. Then

I(V(I)) = rad I.

This is a substantial theorem, fundamental to algebraic geometry. We will prove
it in a few lectures time, after developing some more tools.

Note that, to calculate rad I, we need to add in n-th roots of all elements of I,
not just the generators. For example, if I = (X, Y 2 −X) ⊆ k[X, Y ], then we can
rewrite this as I = (X, Y 2) and so rad I = (X, Y ) 6= I, even though neither of the
original generators of I had any non-trivial n-th roots.

Products. Just a remark on one other way of constructing new affine algebraic
sets from existing ones:

If V ⊆ Am and W ⊆ An are affine algebraic sets, then their Cartesian product
V ×W ⊆ Am+n is an affine algebraic set. Write

V = {(x1, . . . , xm) ∈ Am : f1(x) = · · · = fr(x) = 0},
W = {(y1, . . . , yn) ∈ An : g1(y) = · · · = gs(y) = 0}.

Then
V×W = {(x1, . . . , xm, y1, . . . , yn) ∈ Am+n : f1(x) = · · · = fr(x) = g1(y) = · · · = gs(y) = 0}.

This looks a bit like the equations defining V ∩ W , but here the fi involve
different variables from the gj, while for V ∩W both used the same variables.

Zariski topology. We have seen that affine algebraic sets in An satisfy the
following conditions:
(i) An and ∅ are affine algebraic sets. (The empty set is the vanishing set of a

non-zero constant polynomial.)
(ii) A finite union of affine algebraic sets is an affine algebraic set.
(iii) An arbitrary intersection of affine algebraic sets is an affine algebraic set.
These are precisely the conditions satisfied by the closed sets in a topological

space. Therefore, we can define a topological space in which the underlying set
is An and the closed sets are the affine algebraic sets. This is called the Zariski
topology.

For any affine algebraic set V ⊆ An, we define the Zariski topology on V to
be the subspace topology on V induced by the Zariski topology on An.
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4. Zariski topology and irreducible sets

Basic facts about the Zariski topology. We defined the Zariski topology on
an affine algebraic set V ⊆ An to be the subset topology induced by the Zariski
topology on An. Thus: a subset of V is Zariski closed in V if and only if it is
Zariski closed in An, but a Zariski open subset of V need not be Zariski open
in An. (For example: let V be the x-axis in A2. Then V \ {0} is open in V , but
not open in A2.)
Example. The Zariski topology on A1 is the same as the cofinite topology.

Thus we see that that Zariski topology has much fewer closed sets (or much
fewer open sets) than for example the Euclidean topology.
Lemma 4.1. Suppose that k = C (so there is a Euclidean topology on An

C). If V
is a Zariski closed subset of An

C, then V is closed in the Euclidean topology. (“The
Euclidean topology is finer than the Zariski topology.”)
Proof. Let f ∈ C[X1, . . . , Xn] be a polynomial. It is a continuous function An

C → C
for the Euclidean topology. Since {0} is a closed subset of C, V(f) = f−1(0) is
a closed subset of An

C in the Euclidean topology. We conclude by noting that
intersections of closed sets are closed. �

The open subsets of the Zariski topology are all “very big.” This is made precise
(for A1) by the following lemma.
Lemma 4.2. Prove that every pair U1, U2 of non-empty open sets in A1 has a
non-empty intersection U1 ∩ U2.

Hence the Zariski topology on A1 is not Hausdorff.
A subset of A1 is dense in the Zariski topology if and only if it is infinite.
At the moment, the Zariski topology is likely to seem very strange. It might

also seem like: what is the point of such a strange topology? We will not use it
in a very deep way, it is just a convenient language to be able to talk about open
and closed sets. (It does get used more seriously in the theory of schemes.)

Connected and irreducible sets.
Question. Consider the following affine algebraic sets in A2. Do they have 1 or
2 pieces? (I have deliberately not specified what I mean by “pieces.” There are
multiple sensible interpretations, so there is not always a unique “correct” answer.)

(1) The union of two disjoint lines V(X(X − 1)).
(2) The union of two intersecting lines V(XY ).
(3) The hyperbola V(XY − 1).

Answer.
(1) V(X(X − 1)) unambiguously has 2 pieces: the two lines X = 0 and X = 1.

Recall that a topological space is connected if it is not possible to write
it as the union of two disjoint non-empty closed sets. This notion makes
sense for the Zariski topology.

V(X(X − 1)) is not connected because it is V(X) ∪ V(X − 1).
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(2) This has more than one answer. The two axes form 2 pieces. However
they intersect at the origin, joining them into 1 piece. The set V(XY ) is
connected but reducible.

Definition. A topological space S is reducible if it is empty, or there
exist closed sets S1, S2 ⊆ S such that S = S1 ∪ S2, and neither S1 nor S2
is equal to S.

The opposite: A topological space S is irreducible if it is non-empty
and it is not possible to write it as the union S1 ∪ S2 of two closed sets,
unless at least one of S1 and S2 is equal to S itself. (Change from the
definition of connected: S1 and S2 are not required to be disjoint.)

Irreducibility is not a very useful notion for the topological spaces we con-
sider in analysis. For example, considering the real line with the Euclidean
topology, we can write it as a union of proper closed subsets:

R = {x ∈ R : x ≤ 0} ∪ {x ∈ R : x ≥ 0}
These subsets are not disjoint because they intersect at 0.

(3) A drawing of V(XY − 1) in R2 looks like it has two pieces. But (as
mentioned before) we are missing a lot by only looking at real solutions.
Over C it unambiguously has one piece.

One way to visualise this is to note that V(XY − 1) “looks like” the
set A1 \ {0} (projecting onto the x coordinate is a bijection between these
sets). This is not a formal statement – we have not yet defined a notion
of isomorphism of affine algebraic sets, and even if we had, A1 \ {0} is not
an affine algebraic set. In a few weeks we will develop technology to make
this into a rigorous statement.

But for now we use it as a heuristic. R \ {0} unambiguously has 2
pieces, but C \ {0} unambiguously has 1 piece. So the hyperbola (over an
algebraically closed field) should have only one piece. We prove below the
lecture that V(XY − 1) is irreducible (and also connected).

Lemma 4.3. The hyperbola H = V(XY − 1) is irreducible.

Proof. We need to describe the Zariski closed subsets of H. So let V ⊆ H be a
proper Zariski closed subset. There must be some polynomial f ∈ k[X, Y ] which
vanishes on V but does not vanish on all of H.

Because V ⊆ H and y = 1/x on H, we have
f(x, y) = f(x, 1/x) when (x, y) ∈ V.

Now f(X, 1/X) is almost a polynomial in the single variable X, except that it
may contain negative powers of X:

f(X, 1/X) =
∑
n∈Z

anX
n.

We can multiply up by Xm where −m is the lowest exponent of X which appears
in this expression. Then Xmf(X, 1/X) is a polynomial in X, which vanishes on V .
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Furthermore f(X, 1/X) is not identically zero because f does not vanish identi-
cally onH. HenceXmf(X, 1/X) is a non-zero single-variable polynomial, therefore
it has only finitely many roots.

The roots of Xmf(X, 1/X) = 0 are the possible x-coordinates for points in V .
For each value of x, there is at most one possible y such that (x, y) ∈ V because
y = 1/x on V . Therefore V is finite.

Thus the Zariski topology on H is the cofinite topology, and we know that this
is irreducible. �

Here’s a bonus fact about connected sets in the Zariski topology which I didn’t
mention in the lecture. The proof is surprisingly hard.

Theorem. (Not part of the course.) Over C, an affine algebraic set in is connected
in the Zariski topology if and only if it is connected in the Euclidean topology.

Question. If V is an affine algebraic set, what condition on the ideal I(V ) is
equivalent to V being irreducible?
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5. Irreducible components

Correction. In the last lecture, we defined reducible and irreducible topological
spaces. These definitions were wrong about the empty set. According to a correct
definition, the empty set is reducible: it should say “a set is reducible if it is empty,
or ...”. (I have corrected the definition in these notes.)

Note on topology. I have written some short notes on the topological definitions
we need, available on Blackboard and on my web page. This lecture contains the
most topology of any lecture in the course.

Prime ideals.

Definition. (from Commutative Algebra) An ideal I in a ring R is a prime ideal
if I 6= R and for every f, g ∈ R, if fg ∈ I, then f ∈ I or g ∈ I (or both).

Lemma 5.1. An affine algebraic set V ⊆ An is irreducible if and only if I(V ) is
a prime ideal in k[X1, . . . , Xn].

Proof. First suppose that V is irreducible. Suppose we have f, g ∈ k[X1, . . . , Xn]
such that fg ∈ I(V ). Let

V1 = {x ∈ V : f(x) = 0}, V2 = {x ∈ V : g(x) = 0}.

For every x ∈ V , f(x)g(x) = 0 and hence either f(x) = 0 or g(x) = 0. Thus for
every x ∈ V , either x ∈ V1 or x ∈ V2. In other words, V = V1 ∪ V2. Furthermore
V1 and V2 are closed subsets of V . Hence as V is irreducible, either V1 = V or
V2 = V . If V1 = V then f ∈ I(V ) and if V2 = V then g ∈ I(V ).

Now suppose that V is reducible. Then we can write it as a union V1 ∪ V2 of
proper closed subsets. Since V1 is a proper closed subset of V , there exists some
f ∈ k[X1, . . . , Xn] vanishing on V1 but not on all of V . Similarly there exists g
vanishing on V2 but not on all of V . Thus neither f nor g is in I(V ), but the
product fg vanishes on V1 ∪ V2 and hence we have fg ∈ I(V ). Thus I(V ) is not
prime.
V is empty if and only if I(V ) = k[X1, . . . , Xn], which is explicitly defined to

not be a prime ideal. So it was OK to ignore this case above. �

Definition. A hypersurface is an affine algebraic set in An defined by one
polynomial equation, that is,

{x ∈ An : f(x) = 0}

for some f ∈ k[X1, . . . , Xn].

It follows from Lemma 5.1 together with Hilbert’s Nullstellensatz that a hyper-
surface defined by a polynomial f is irreducible if and only if f is a power of an
irreducible polynomial (see problem sheet 1).
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Irreducible spaces and open sets.
It can often be convenient to rewrite the definition of irreducible spaces in terms

of open sets instead of closed sets:
Lemma 5.2. The following conditions on a topological space S are equivalent to
irreducibility:
(i) S is non-empty, and every pair of non-empty open subsets U1, U2 ⊆ S have

non-empty intersection U1 ∩ U2.
(ii) S is non-empty, and every non-empty open subset of S is dense in S.
Corollary 5.3. Let S be a irreducible topological space and U ⊆ S a non-empty
open subset. Then U is irreducible (in the subspace topology).

(Proofs of the lemma and corollary are just manipulations of the topological
definitions.)

Corollary 5.3(1) says that “irreducible” is a very long way from “Hausdorff”:
the Hausdorff condition says that a space has lots of pairs of disjoint non-empty
open subsets, while an irreducible space has none. For example, we saw that R
(with the Euclidean topology) is reducible in many ways.

Corollary 5.3 implies that A1 \ {0} is irreducible (in the subspace topology
induced by the Zariski topology on A1), because it is open in A1. This lends
support to the heuristic argument that the hyperbola V(XY − 1) is irreducible,
but it is not a proof – checking that the subspace topology on A1 \ {0} is the same
as the Zariski topology on V(XY − 1) would require as much work as the proof
that V(XY − 1) is irreducible.

Irreducible components.
Just like the definition of connected components, we can define:

Definition. Let S be a topological space. An irreducible component of S is
a maximal irreducible subset of S.

Unlike connected components, irreducible components need not be disjoint. For
example, the irreducible components of {(x, y) : xy = 0} are the lines x = 0 and
y = 0, which intersect in {(0, 0)}.

More generally, the irreducible components of a hypersurface V(f) correspond to
the irreducible factors of f : if f = fa1

1 · · · famm (where the fi are distinct irreducible
polynomials), then the irreducible components of V(f) are V(f1), . . . ,V(fm).

Irreducible components have the following key properties:
Proposition 5.4. Let V be an affine algebraic set. Then:

(1) The union of the irreducible components of V is all of V .
(2) V has only finitely many irreducible components.
(1) matches a property of connected components. (2) does not apply to the

connected components of an arbitrary topological space: for example, Z or Q with
the subspace topology from R. Note that (2) does imply that an affine algebraic
set has only finitely many connected components for the Zariski topology, because
each connected component must be a union of irreducible components.
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Proposition 5.4(2) is a “finiteness” statement, so it is not surprising that it
follows from the noetherian property (the descending chain condition on closed
subsets). The key idea in the proof is as follows: If an affine algebraic set is
reducible, then we can write it as a union of proper closed subsets. If these subsets
are reducible, then we can write them in turn as unions of proper closed subsets.
The following lemma says that this process eventually stops: after finitely many
steps, we reach irreducible sets.
Lemma 5.5. Every affine algebraic set can be written as a union of finitely many
irreducible closed subsets.
Proof. Suppose that V is an affine algebraic set which cannot be written as a
union of finitely many irreducible closed subsets.
V must be reducible (otherwise we could write it as a union of one irreducible

closed subset!) So V = V1 ∪W1, with V1 and W1 proper closed subsets of V .
V1 and W1 cannot both be unions of finitely many irreducible closed subsets,

because taking the union of those decompositions would give us V as a union of
finitely many irreducible closed subsets.

Thus at least one of V1 and W1 does not satisfy the lemma. Without loss of
generality, we may suppose that V1 does not satisfy the lemma.

Then V1 must be reducible, so we can write V1 = V2 ∪W2. We can repeat the
argument: at least one of V2 and W2 does not satisfy the lemma, without loss of
generality V2, etc.

Thus we build up a chain of closed subsets V ⊃ V1 ⊃ V2 ⊃ V3 ⊃ · · · where
all these sets do not satisfy the lemma, and all the inclusions are strict. This
contradicts Lemma 3.5 (the descending chain condition for affine algebraic sets).

�

In order to prove Proposition 5.4, we want to show that the finitely many
irreducible closed subsets in Lemma 5.5 are the irreducible components. There is
just one wrinkle: Consider V = V(XY ). The irreducible components are V(X)
and V(Y ). But we could write V as a union of finitely many irreducible closed
subsets by saying:

V = V(X) ∪ V(Y ) ∪ {(0, 2)}.
Thus we can always add in extra sets to a decomposition as in Lemma 5.5, where
the extra sets are contained in one of the other sets in the decomposition.

Of course we can always throw away these empty sets: let V = V1 ∪ · · · ∪ Vr,
as in Lemma 5.5. By throwing away any Vi which is contained in another Vj, we
can assume that Vi 6⊆ Vj whenever i 6= j, and still the union of the Vjs will be V .
After doing this we can prove:
Proposition 5.6. Let V be an affine algebraic set. Write V = V1∪· · ·∪Vr, where
the Vi are irreducible closed subsets and Vi 6⊆ Vj for i 6= j.

Then V1, . . . , Vr are precisely the irreducible components of V .
Proof. First we show that each Vi is an irreducible component. By hypothesis,
Vi is irreducible. So if Vi is not an irreducible component, it is not a maximal
irreducible set and must be contained in a larger irreducible set W ⊆ V .
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But then W = (V1 ∩W ) ∪ · · · ∪ (Vr ∩W ), where V1 ∩W, . . . , Vr ∩W are closed
subsets of W . Because W is irreducible, we must have W = Vj ∩W for some j.
Thus Vi ⊆ W ⊆ Vj. By the condition Vi 6⊆ Vj for any j 6= i, we must have i = j
and W = Vi. Thus Vi is an irreducible component of V .

Conversely, let C be an irreducible component of V . Then C = (V1 ∩C)∪ · · · ∪
(Vr ∩ C). By the same argument as before, the irreducibility of C implies that
C ⊆ Vi for some i. Then the maximality of C implies that C = Vi. �

The combination of Lemma 5.5 and Proposition 5.6 proves Proposition 5.4 (both
(1) and (2)).

Primary decomposition of ideals.
(Not part of the course)
The irreducible component decomposition of an affine algebraic set can give a

geometric understanding of the primary decomposition of ideals in the noetherian
ring k[X1, . . . , Xn]. However, the irreducible decomposition gives only partial
information about the primary decomposition of an ideal, because ideals contain
more information than affine algebraic sets (recall that the algebraic set depends
only on the radical of the ideal).

For example: I = (X2, XY ) ⊆ k[X, Y ]. Then V(I) is simply the line X = 0,
which of course is irreducible. However a primary decomposition of I is

I = (X) ∩ (X2, XY, Y 2).
Here (X) is the ideal of the line X = 0, the unique irreducible component of
V = V(I). The ideal (X2, XY, Y 2) defines the point {(0, 0)}, which is contained
in V so is not an irreducible component.

Thus the minimal associated primes of the primary decomposition of I core-
spond to the irreducible components of V(I), while non-minimal associated primes
correspond to additional smaller sets strictly contained in the irreducible compo-
nents (called “embedded components”). In scheme theory, we can think of V(I)
as containing “multiple copies” of these embedded components. For example, the
ideal I = (X2, XY ) corresponds (in the world of schemes) to the line X = 0 with
“two copies of the origin.”



16

6. Regular functions and regular maps

Regular functions.
So far we have only considered algebraic sets as sets, sitting individually. Now

we look at functions between them. Just as one uses continuous functions for
topological spaces, holomorphic functions for complex manifolds, homomorphisms
for groups, etc., so algebraic geometry has its own type of functions – regular
functions. Of course, these are given by polynomials.

Definition. Let V ⊆ An be an affine algebraic set. A regular function on V is
a function f : V → k such that there exists a polynomial F ∈ k[X1, . . . , Xn] with
f(x) = F (x) for all x ∈ V .

Note that the polynomial F is not uniquely determined by the function f :
F,G ∈ k[X1, . . . , Xn] determine the same regular function on V if and only if
F −G vanishes on V , that is iff F −G ∈ I(V ).

Definition. The regular functions on V form a k-algebra: they can be added
and multiplied by each other and multiplied by scalars in k. This is called the
coordinate ring of V and denoted k[V ].

There is a ring homomorphism k[X1, . . . , Xn] → k[V ] which sends a polyno-
mial F to the function F|V which it defines on V . This homomorphism is surjective
and its kernel is I(V ), so

k[V ] ∼= k[X1, . . . , Xn]/I(V ).

Example. What are the coordinate rings of the following affine algebraic sets?
(i) An.
(ii) A point.
(iii) {x ∈ A1 : x(x− 1) = 0} (two points).
(iv) {(x, y) ∈ A2 : xy = 0} (two intersecting lines).
(v) {(x, y) ∈ A2 : xy − 1 = 0} (hyperbola).

Answers.
(i) k[X1, . . . , Xn].
(ii) k. A regular function on a point is just a single value.
(iii) k× k. A regular function on two points is determined by two scalars, namely

its value on each of the two points. For any pair of values (a, b) ∈ k × k,
one can easily write down a polynomial f ∈ k[X] such that f(1) = a and
f(0) = b. Alternatively, one can check algebraically that the map

(a, b) 7→ (a− 1)X + b mod (X(X − 1))
is a k-algebra isomorphism k × k → k[X1, . . . , Xn]/(X(X − 1)).

(iv) {(f, g) ∈ k[X]× k[Y ] : f(0) = g(0)}.
To prove this, note that

k[X, Y ]/(XY ) ∼=
{
a0+

m∑
r=1

brX
r+

n∑
s=1

csY
s : a0, b1, . . . , bm, c1, . . . , cn ∈ k,m, n ∈ N

}
.
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We can compare these two descriptions by observing that

k[X] =
{
a0 +

m∑
r=1

brX
r
}
, k[Y ] =

{
a0 +

n∑
s=1

csY
s
}
,

and the condition that f(0) = g(0) is equivalent to insisting that these two
polynomials have the same constant coefficient a0.

(v) The quotient ring k[X, Y ]/(XY − 1).
To describe this more explicitly, note that any term ai,jX

rY s of a two-
variable polynomial is congruent (mod XY −1) to either ar,sXr−s (if r ≥ s) or
ar,sY

s−r (if s > r). Thus every coset in k[X, Y ]/(XY −1) has a representative
of the form

m∑
i=0

aiX
i +

n∑
j=1

ajY
j.

The polynomials of this form determine different functions on V , so we have
written down exactly one representative of each coset.

Since XY = 1 in k[V ], we may relabel Y as X−1; then the multiplication
rule will be what the notation leads us to expect. So we can write

k[V ] = k[X,X−1] =
{ m∑
j=−n

ajX
m : a−n, . . . , am ∈ k,m, n ∈ N

}
.

Example (iii) generalises: if V is a disconnected affine algebraic set, we can
write V as a union V1 ∪ V2 of disjoint Zariski closed subsets, and then

k[V ] = k[V1]× k[V2].
On the other hand, if V is reducible but connected, so that the sets V1 and V2 are
not disjoint, then k[V ] is a proper subset of k[V1]× k[V2] (see example (iv)).

Example (iv) does not generalise to arbitrary reducible algebraic sets: we may
have V = V1 ∪ V2 where V1 and V2 are closed subsets, but

k[V ] 6= {(f, g) ∈ k[V1]× k[V2] : f|V1∩V2 = g|V1∩V2}.
There will be an example of this on problem sheet 2.

Lemma 6.1. An affine algebraic set V is irreducible if and only if k[V ] is an
integral domain.

Proof. V is irreducible if and only if I(V ) is a prime ideal in k[X1, . . . , Xn]. �

Regular maps. A regular function goes from an algebraic set V to the field k.
We can also define regular maps, which go from one algebraic set V to another
algebraic set W .

Definition. Let V ⊆ Am and W ⊆ An be affine algebraic sets. A regular map
ϕ : V → W is a function V → W such that there exist polynomials F1, . . . , Fn ∈
k[X1, . . . , Xm] such that

ϕ(x) = (F1(x), . . . , Fn(x))
for all x ∈ V .

Regular maps are often called morphisms.
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In order to check that a given list of polynomials F1, . . . , Fn defines a regular
map V → W , it is necessary to check that (F1(x), . . . , Fn(x)) ∈ W for every x ∈ V .
Equivalently, we need to check that the regular functions F1|V , . . . , Fn|V ∈ k[V ]
satisfy the equations

g(F1|V , . . . , Fn|V ) = 0
in the coordinate ring k[V ], for each polynomial g ∈ I(W ).
Examples.

(1) Let V ⊆ Am be an affine algebraic set. For any n < m, the projection
π : V → An defined by

π(x1, . . . , xm) = (x1, . . . , xn)
is a regular map.

(2) A regular function on V is the same thing as a regular map V → A1.
(3) Consider SLn, the set of n × n matrices with determinant 1. This is an

affine algebraic set in An2 because the determinant is a polynomial in the
entries of a matrix. The map a 7→ a−1 is a regular map SLn → SLn:
Cramer’s rule tells us how to write each entry of a−1 as a polynomial in the
entries of a divided by det a, and because we are only considering a ∈ SLn
we can drop the division by det a.

Regular maps and Zariski topology. A regular map ϕ : V → W is a contin-
uous function with respect to the Zariski topology. This is because, if A ⊆ W is
a Zariski closed subset defined by polynomials f1, . . . , fr, then ϕ−1(A) is the zero
set of the polynomials f1 ◦ ϕ, . . . , fr ◦ ϕ and therefore ϕ−1(A) is Zariski closed. In
complex analysis, “holomorphic” is a much stricter condition than “continuous in
the Euclidean topology,” and similarly “regular” is much stricter than “continuous
in the Zariski topology.”

The following fact is very useful:
Lemma 6.2. Let ϕ, ψ : V → W be regular maps. If there exists a Zariski dense
subset A ⊆ V such that ϕ|A = ψ|A, then ϕ = ψ on all of A.

Note that, if X and Y are Hausdorff topological spaces, then any continuous
maps X → Y which agree on a dense set must agree everywhere. However the
lemma does not follow immediately from the fact that regular maps are continuous,
because the Zariski topology is not Hausdorff! (And the lemma is definitely false if
we try to generalise it to all continuous maps with respect to the Zariski topology.)
Thus in order to prove the lemma, we have to use something special about regular
maps as opposed to general continuous maps.
Proof. Write ϕ = (F1, . . . , Fm), ψ = (G1, . . . , Gm), where F1, . . . , Fm, G1, . . . , Gm

are polynomials. Then Fi −Gi is also a polynomial for each i, and so
Veq = {x ∈ V : ϕ(x) = ψ(x)} = {x ∈ V : (Fi −Gi)(x) = 0 for all i}

is a Zariski closed subset of V . But we know that Veq contains A, which is Zariski
dense in V . Hence Veq = V . �
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7. Regular maps and algebra; rational functions

Isomorphisms.

Definition. A regular map ϕ : V → W is an isomorphism if there exists a
regular map ψ : W → V such that ψ ◦ ϕ = idV and ϕ ◦ ψ = idW .

Example. If V is the parabola {(x, y) : y − x2 = 0}, then the regular map
ϕ : V → A1 given by

ϕ(x, y) = x

is an isomorphism because it has an inverse ψ : A1 → V given by
ψ(x) = (x, x2).

Example. On the other hand, if H is the hyperbola {(x, y) : xy = 1}, then the
projection (x, y) 7→ x is not an isomorphism H → A1 because it is not surjective
so it cannot possibly have an inverse. This is not enough to prove that H is not
isomorphic to A1, because maybe there is some other regular map H → A1 which
is an isomorphism. (We will soon prove that H is not isomorphic to A1.)

Example. Consider the affine algebraic set W = {(x, y) : y2 − x3 = 0}. The
regular map ϕ : A1 → W given by

ϕ(t) = (t2, t3)
is a bijection but it is not an isomorphism. Note that we should expect W not to
be isomorphic to A1 because it has a singularity at the origin.

To prove that ϕ : A1 → W is not an isomorphism: Consider a regular map
ψ : W → A1. It must be given by a polynomial g(X, Y ) ∈ k[X, Y ] and so

ψ ◦ ϕ(t) = ψ(t2, t3)
is a polynomial in t which can have a constant term and terms of degree 2 or
greater, but no term of degree 1. Hence we cannot find ψ such that ψ ◦ ϕ(t) = t.

Regular maps and the coordinate ring.
Suppose we have a regular map ϕ : V → W between affine algebraic sets. For

each regular function g on W , we get a regular function ϕ∗g on V defined by
(ϕ∗g)(x) = g(ϕ(x)).

We call ϕ∗g ∈ k[V ] the pull-back of g ∈ k[W ].
Thus ϕ induces a k-algebra homomorphism

ϕ∗ : k[W ]→ k[V ].
Note that ϕ∗ goes in the opposite direction to ϕ.

If we have two regular maps ϕ : V → W and ψ : W → Z, then we can compose
them to get ψ ◦ ϕ : V → Z. One can easily check that the associated pullback
maps on coordinate rings satisfy

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ : k[Z]→ k[V ]. (*)
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For those who know category theory, we say that V 7→ k[V ] is a contravariant
functor

{affine algebraic sets} → {k-algebras}.
In particular, (*) tells us that if ϕ : V → W is an isomorphism with inverse

ψ : W → V , then ψ∗ ◦ ϕ∗ = id and ϕ∗ ◦ ψ∗ = id. Thus if V and W are isomorphic
affine algebraic sets, then their coordinate rings k[V ] and k[W ] are isomorphic as
k-algebras.

Example. Now we can prove that the hyperbola H is not isomorphic to A1: we
know that k[H] = k[X,X−1], and this is not isomorphic to k[A1] = k[X] because
in k[X] the only invertible elements are the scalars, while k[X,X−1] contains
non-scalar invertible elements, such as X.

Rational functions.
Informally, rational functions are “functions” on varieties defined by polynomial

fractions, for example the “function” x 7→ 1/x on A1. Observe that this is not
really a function A1 → A1 because it is not defined at x = 0, but it is a genuine
function on the Zariski open subset A1\{0}. (These are analogues of meromorphic
functions in complex analysis.)

Let V be an irreducible affine algebraic set.

Definition. The function field of V is the field of fractions of the coordinate
ring k[V ]. We denote this by k(V ).

(We make this definition only for irreducible affine algebraic sets because they
have integral domains as their coordinate rings, and it is only integral domains
which have field of fractions.)

For example, the function field of A1 is k(X), the fraction field of the polynomial
ring k[X].

Definition. A rational function on V is an element of the function field k(V ).
Thus a rational function can be written in the form f/g, where f and g are regular
functions. There may be many different choices for f and g which define the same
rational function f/g.

Definition. We say that a rational function ϕ ∈ k(V ) is regular at a point x ∈ V
if there exist regular functions f, g ∈ k[V ] such that ϕ = f/g and g(x) 6= 0.

Thus regular points are precisely the points at which we can assign a value to
ϕ(x): if g(x) 6= 0, then we can define ϕ(x) = f(x)/g(x).

We are allowed to choose different fractions f/g representing ϕ at different points
x ∈ V , in order to show that those points are regular. For example, consider the
algebraic set defined by the equation XY = ZT in A4. Let

ϕ = X/Z ∈ k(V ).

The defining equation implies that we also have

ϕ = T/Y.



21

Looking at the fraction X/Z shows us that ϕ is regular wherever Z 6= 0, and
looking at the fraction T/Y shows us that ϕ is regular wherever Y 6= 0. On the
other hand, ϕ is not regular on the closed subset Y = Z = 0. (One can verify that
there is no other fraction representing ϕ which is non-zero on this closed subset.)
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8. Domain of definition and rational maps

Domain of definition of a rational function.
Let V be an irreducible affine algebraic set. Let ϕ ∈ k(V ) be a rational function.

Definition. The set of points where ϕ is regular is called the domain of defini-
tion of ϕ, and denoted domϕ.

This is the set of points where it makes sense to assign a value to ϕ(x). For
x ∈ domϕ, the value ϕ(x) is independent of which fraction f/g we choose to
represent ϕ (as long as g(x) 6= 0).

Lemma 8.1. The domain of definition of a rational function ϕ ∈ k(V ) is a
non-empty Zariski open subset of V .

Proof. Consider the set of all possible fractions f/g with f, g ∈ k[V ] representing
ϕ ∈ k(V ). The set of points at which ϕ is not regular is the intersection of the
Zariski closed sets {x ∈ V : g(x) = 0} across all these fractions. Hence the set of
points at which ϕ is not regular is a Zariski closed subset of V . The domain of
definition is the complement of this set, and therefore is Zariski open.

To show that the domain of definition is non-empty, pick a single fraction f/g
representing ϕ ∈ k(V ). The regular function g is not equal to zero as an element
of k[V ] (by the definition of the field of fractions), so {x ∈ V : g(x) = 0} is a
proper closed subset of V . The domain of definition contains the complement of
this set, namely {x ∈ V : g(x) 6= 0}, and hence is non-empty. �

Note that every regular function f ∈ k[V ] is also a rational function f/1 ∈ k(V ),
and its domain of definition is all of V . The converse also holds:

Lemma 8.2. Let ϕ ∈ k(V ) be a rational function whose domain of definition is
equal to V . Then ϕ is a regular function on V .

Proof. Since domϕ = V , for each point x ∈ V , we can choose regular functions
fx, gx ∈ k[V ] such that ϕ = fx/gx and gx(x) 6= 0. Let I ⊆ k[V ] denote the ideal
generated by the functions gx. Because k[V ] is noetherian, we can pick finitely
many of these functions gx1 , . . . , gxm which still generate I.

For each x ∈ V , there is some gx ∈ I which is non-zero at x. Hence the Zariski
closed set

{x ∈ V : h(x) = 0 for all h ∈ I}

is empty. Then the Nullstellensatz implies that I is all of k[V ] (there are a lot
more steps involved in applying the Nullstellensatz here than I realised – we will
see how to do this in a couple of lectures time).

In particular, 1 ∈ I. Since I = (gx1 , . . . , gxm), there exist u1, . . . , um ∈ k[V ] such
that

1 = u1gx1 + · · ·+ umgxm in k[V ].
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We can now calculate
ϕ = 1.ϕ = (u1gx1 + · · ·+ umgxm)ϕ

= u1gx1

fx1

gx1

+ · · ·umgxm
fxm
gxm

= u1fx1 + · · ·+ umfxm .

Since ui, fxi ∈ k[V ], so is ϕ. �

Rational maps.
Let V ⊆ Am, W ⊆ An be irreducible affine algebraic sets.

Definition. A rational map ϕ : V 99K W is an n-tuple of rational functions
ϕ1, . . . , ϕn ∈ k(V ) such that, for every point x ∈ V where ϕ1, . . . , ϕn are all
regular, the point (ϕ1(x), . . . , ϕn(x)) is in W .

We use the broken arrow symbol 99K instead of the usual arrow because a
rational map is not a function on V in the usual set-theoretic sense. It only defines
a genuine function U → W , where U is the domain of definition of ϕ. This is
defined as follows.

Definition. The domain of definition of a rational map ϕ : V 99K W is the
intersection of the domains of definition of the component rational functions
(ϕ1, . . . , ϕn).

The two lemmas we proved for rational functions also hold for rational maps:
the domain of definition of a rational map ϕ : V 99K W is a non-empty Zariski open
subset of V , and if a rational map is regular everywhere then it is a regular map.
In order to prove that the domain of definition of a rational map is non-empty, we
have to use the fact that V is irreducible (and therefore every open subset of V is
dense).

Example. An important example of a rational map is projection from a point
onto a hyperplane.

Let H be a hyperplane in An (that is, a set defined by a single linear equation).
Let p be a point in An \ H. For simplicity, we shall assume that p is the origin
and that

H = {(x1, . . . , xn) ∈ An : xn = 1}.
(We could always reduce to this case by a suitable change of coordinates.)

Let us write H0 for the hyperplane through p parallel to H, that is,
Hp = {(x1, . . . , xn) ∈ An : xn = 0}.

For each point x ∈ An \Hp, let Lx denote the line which passes through p and x.
Since x 6∈ Hp, Lx intersects H in exactly one point. Call this point ϕ(x).

We can write this algebraically as
ϕ(x1, . . . , xn) = (x1/xn, . . . , xn−1/xn, 1)

and so ϕ is a rational map An 99K H. This map is called projection from p
onto H.
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We have domϕ = An \Hp. (Note that we have not proved this, because we have
not proved that there is no other list of fractions which define the same rational
map but have non-zero denominators at points in Hp. One can prove this.)

For any affine algebraic set V ⊆ An such that V 6⊆ H0, we can restrict π to get
a rational map V 99K H. (Note that p might be in V , or it might not.)

Example. Let V be the circle {(x, y) : x2 + y2 = 1}. Consider the projection
from the point p = (1, 0) on to the line x = 0. This is a rational map π : V 99K A1

with the formula
π(x, y) = y/(1− x).

We can see geometrically that this projection induces a bijection between the circle
(excluding p) and the line (at least for real points). If we compute the formula for
the inverse map, we get

ψ(t) =
(t2 − 1
t2 + 1 ,

2t
t2 + 1

)
,

a well-known parameterisation of the circle. Thus we see that the inverse is a
rational map ψ : A1 99K V . Note that ψ is not regular at t = ±i – we don’t see
this on the picture, which only shows the real points.

Next time we will define formally what it means to say that the rational maps
π and ψ are inverse to each other, taking into account that they are not true
functions between the sets V and A1 because they are not regular everywhere.
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9. Composing rational maps; from algebra to geometry

Composing rational maps.
Last time we defined rational maps π : V 99K A1 and ψ : A1 99K V where V is

the circle. These maps are inverses in that composing them (either way round)
gives the identity, if we ignore the points where the maps are not regular.

In order to rigorously define composition of rational maps, we need to notice that
sometimes the set of points where a composite map is undefined is “everywhere”
and exclude that situation. For example, consider the rational map A2 99K A1

defined by
ξ(x, y) = 1

1− x2 − y2 .

This map is not regular anywhere on the circle V , and hence it does not make sense
to try to define the composite map ξ ◦ ψ : A1 99K A1 (it is not defined anywhere!).

This problem can occur because the image of ψ is not dense in A2. So to rule
it out, we make the following definition.

Definition. The image of a rational map ϕ : V 99K W is the set of points
{ϕ(x) ∈ W : x ∈ domϕ}.

A rational map is dominant if its image is Zariski dense in W .

For example, ψ from the end of the previous lecture is dominant if we consider
it as a rational map A1 99K V but it is not dominant if we consider it as a rational
map A1 99K A2. (This is like surjectivity: whether a function is surjective or not
depends on what codomain you declare it to have.)

Let V , W , T be irreducible affine algebraic sets. If ϕ : V 99K W is a dominant
rational map and ψ : W 99K T is a rational map (ψ is not required to be dominant),
then it makes sense to compose them because we know that domψ is a Zariski
open subset of W , while imϕ is a Zariski dense subset of W and so

domψ ∩ imϕ 6= ∅.
Thus there are at least some points where ψ ◦ ϕ is defined. One can check (by
writing out ψ in terms of fractions of polynomials, then substituting in fractions
of polynomials representing ϕ) that ψ ◦ ϕ is a rational map V 99K T .

Definition. Rational maps ϕ : V 99K W and ψ : W 99K V are rational inverses
if both are dominant and ϕ◦ψ = idW and ψ◦ϕ = idV (everywhere these composite
rational maps are well-defined).

A rational map ϕ : V 99K W is a birational equivalence if it is dominant and
has a rational inverse.

We say that irreducible algebraic sets V andW are birational (or birationally
equivalent) if there exists a birational equivalence V 99K W .

Our example from the previous lecture showed that the circle is birational to A1.
Another example is the cuspidal cubic

W = {(x, y) : y2 = x3}.
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This is also birational to A1, as shown by the rational maps
W 99K A1 : (x, y) 7→ y/x,

A1 99K W : t 7→ (t2, t3).
Birationally equivalent affine algebraic sets look the same “almost everywhere.”
For example, the cuspidal cubic is the same as the affine line everywhere except
at the origin.

On the other hand, A1 is not birationally equivalent to A2 or to an elliptic curve
{(x, y) : y2 = f(x)} where f is a cubic polynomial with no repeated roots.

We will prove this later in the course once we have more tools.
If ϕ : V 99K W is a dominant rational map, then we can use it to pull back

rational functions from W to V (just like we earlier used regular maps to pull back
regular functions). We get a k-homomorphism of fields

ϕ∗ : k(W )→ k(V )
defined by ϕ∗(g) = g ◦ ϕ. (A k-homomorphism means that ϕ∗ restricts to the
identity on the copies of k which are contained in k(W ) and k(V ), namely the
constant functions.)

If ϕ is a birational equivalence, then ϕ∗ is a k-isomorphism of fields.

From algebra homomorphisms to regular maps.
We have seen that each regular map f : V → W induces a k-algebra homo-

morphism f ∗ : k[W ] → k[V ], and that each dominant rational map ϕ : V 99K W
induces a k-field homomorphism ϕ∗ : k(W )→ k(V ). We can also carry out these
constructions in the reverse direction: starting with a k-algebra homomorphism
and getting a regular map, or similarly for rational maps.

Observe that if f : V → W is a regular map andW ⊆ An, we can recover f from
f ∗ : k[W ] → k[V ] by taking the coordinate functions X1, . . . , Xn ∈ k[W ] on W
and pulling them back to get

f1 = f ∗(X1), . . . , fn = f ∗(Xn) ∈ k[V ].
These are precisely the regular functions on V such that f = (f1, . . . , fn).

This procedure works for any k-algebra homomorphism α : k[W ]→ k[V ]: define
a regular map s : V → W by

s = (α(X1), . . . , α(Xn)).
(Here α(X1), . . . , α(Xn) ∈ k[V ].) Then α = s∗.

Thus every k-algebra homomorphism k[W ] → k[V ] is the pull back by some
regular map V → W . We conclude:

Proposition 9.1. ϕ 7→ ϕ∗ is a bijection
{regular maps V → W} −→ {k-algebra homomorphisms k[W ]→ k[V ]}.

Corollary 9.2. Affine algebraic sets V and W are isomorphic if and only if their
coordinate rings k[V ] and k[W ] are isomorphic as k-algebras.
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The moral is: if we only care about affine algebraic sets up to isomorphism, then
coordinate rings contain exactly the same information as algebraic sets themselves
(in the language of category theory, the functor V 7→ k[V ] is fully faithful).

One can do the same thing for rational maps:

Proposition 9.3. ϕ 7→ ϕ∗ is a bijection
{dominant rational maps V 99K W} −→ {k-field homomorphisms k(W )→ k(V )}.

Corollary 9.4. Irreducible affine algebraic sets V and W are birationally equiva-
lent if and only if their function fields k(V ) and k(W ) are k-isomorphic.

Dictionary between algebraic subsets and ideals.
Can we do something similar with Zariski closed subsets of V , and work them

out from the algebra of k[V ]?
Suppose that V ⊆ An.
In An: the Nullstellensatz tells us that the functions I and V are bijections
{Zariski closed subsets of An} ←→ {radical ideals in k[X1, . . . , Xn]}.

Since I and V reverse the direction of inclusions, we deduce that they restrict
to bijections
{Zariski closed subsets of V } ←→ {radical ideals in k[X1, . . . , Xn] containing I(V )}.

We know that
k[V ] ∼= k[X1, . . . , Xn]/I(V ).

It is a basic algebraic fact that
{ideals in k[X1, . . . , Xn] containing I(V )} ←→ {ideals in k[X1, . . . , Xn]/I(V )}.

Under this correspondence, radical ideals on one side correspond to radical ideals
on the other side and similarly for prime ideals.

We conclude that the natural maps are bijections
{Zariski closed subsets of V } ←→ {radical ideals in k[V ]}

and
{irreducible Zariski closed subsets of V } ←→ {prime ideals in k[V ]}.

Questions. Can we see the points of V through the algebra of k[V ]?
Which k-algebras can occur as k[V ] where V is an affine algebraic set?
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10. Equivalence of algebra and geometry; Nullstellensatz

Points and maximal ideals.
Can we describe the points of an affine algebraic set V in terms of the algebra of

k[V ]? The points of V are the smallest non-empty Zariski closed subsets. Since the
bijection between Zariski closed subsets and ideals reverses direction of inclusion,
they correspond to maximal ideals:

{points of V } ←→ {maximal ideals in k[V ]}.

Reduced finitely generated k-algebras.
To fully understand the relationship between affine algebraic sets and k-algebras,

there is one more question to answer: Which k-algebras can occur as k[V ] where
V is an affine algebraic set?

We write down some algebraic properties which obviously hold for A = k[V ]:
(1) A is finitely generated, because if V ⊆ An then A is generated by the

coordinate functions X1, . . . , Xn.
(2) A is reduced (meaning that if f ∈ A and fk = 0 for some k > 0, then

f = 0). This is because A is a ring of functions in the usual set-theoretic
sense: if fk = 0 then f(x)k = 0 for all x ∈ V , so f(x) = 0 for all x ∈ V .

Using the Nullstellensatz, we can prove that these properties are enough to
characterise the k-algebras which are coordinate rings of affine algebraic sets.
Proposition 10.1. Let A be a finitely generated reduced k-algebra. Then there
exists an affine algebraic set V such that k[V ] ∼= A.
Proof. Pick a finite set f1, . . . , fn ∈ A which generates A as a k-algebra. We can
define a homomorphism α : k[X1, . . . , Xn]→ A by X1 7→ f1, . . . , Xn 7→ fn.

Let I = kerϕ and let V = V(I) ⊆ An.
The homomorphism α is surjective because f1, . . . , fn generate A, and so

A ∼= k[X1, . . . , Xn]/I.
Thus k[X1, . . . , Xn]/I is a reduced k-algebra. It follows that I is a radical ideal.

Hence the Nullstellensatz tells us that I = I(V ). Thus
k[V ] ∼= k[X1, . . . , Xn]/I(V ) ∼= k[X1, . . . , Xn]/I ∼= A. �

The notion of affine variety.
Often in mathematics, it is convenient to consider objects only “up to isomor-

phism.” For example, one might talk about “the group with 7 elements,” ignoring
the fact that there are many different groups with 7 elements because they are all
isomorphic to each other (and therefore they all behave in the same ways).

Similarly, in algebraic geometry we often want to consider affine algebraic sets
up to isomorphism. But affine algebraic sets are always defined in a concrete way:
they are a subset of some specific affine space An. (It is as if we had defined all
finite groups to be subgroups of a symmetric group Sn.) And we have seen that
affine algebraic sets can be isomorphic even when they appear to be quite different
as subsets of affine space, for example the line A1 is isomorphic to the parabola
V(Y − X2) ⊆ A2. Thus it is useful to use different terminology: we talk about
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“affine algebraic sets” when we mean subsets of An, and we talk about “affine
varieties” when we mean an affine algebraic set up to isomorphism, forgetting its
embedding into An.

Proposition 10.1 is more naturally stated in terms of affine varieties rather than
affine algebraic sets: in the proof we had to choose a generating set for A, for which
there is no distinguished choice. Different choices of generating set would lead to
isomorphic affine algebraic sets, but embedded differently into affine space. So it
is better to say that each finitely generated reduced k-algebra A is the coordinate
ring of some affine variety V , with no distinguished choice of embedding into An.

(I mentioned this philosophy about affine varieties before in lecture 2, and I will
mention it again after we have defined quasi-projective varieties.)

For those who know some fancy categorical language, we can sum up all the
results on the equivalence between affine geometric objects and their coordinate
rings by saying that V 7→ k[V ] is an equivalence of categories

{affine varieties over k} −→ {reduced finitely generated k-algebras}op

where the superscript “op” indicates that the directions of morphisms are reversed.

The Weak and Strong Nullstellensatz.
Now we aim to prove Hilbert’s Nullstellensatz. There are many different proofs,

all of which require some difficult algebra. We will roughly follow the method in
Shafarevich (Appendix A), which incorporates the hard algebra into one statement
which we can quote, and then do the rest as geometrically as possible.

Recall the statement of Hilbert’s Nullstellensatz, also called the Strong Nullstel-
lensatz.
Theorem 10.2 (Strong Nullstellensatz). Let I be any ideal in the polynomial
ring k[X1, . . . , Xn] over an algebraically closed field k. We have

I(V(I)) = rad I.
In order to prove this, we will first prove a weaker version, which is called the

Weak Nullstellensatz, then use that to deduce the Strong Nullstellensatz.
Theorem 10.3 (Weak Nullstellensatz). Let I be an ideal in the polynomial
ring k[X1, . . . , Xn] over an algebraically closed field k. If V(I) = ∅, then I =
k[X1, . . . , Xn].

This is a statement about the existence of solutions to polynomial equations,
so it is necessary to require k to be algebraically closed. As an example to show
that it fails when k is not algebraically closed, consider the ideal (X2 + Y 2 + 1) in
R[X, Y ]. This ideal is not the full polynomial ring, but there are no real solutions
to the equation x2 + y2 + 1 = 0.

Note that the Strong Nullstellensatz easily implies the Weak Nullstellensatz: if
rad = k[X1, . . . , Xn] then 1 ∈ rad I so 1 ∈ I so I = k[X1, . . . , Xn].
Proof that Weak Nullstellensatz implies Strong Nullstellensatz. We use a method
called the Rabinowitsch trick, introducing an extra variable.

Let I be an ideal in k[X1, . . . , Xn] and let V = V(I) ⊆ An.
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It is easy to see that rad I ⊆ I(V ). Thus we have to prove that I(V ) ⊆ rad I.
Let f ∈ I(V ). Define a new polynomial g with an extra variable Y by:

g(X1, . . . , Xn, Y ) = f(X1, . . . , Xn) · Y − 1.
Let J be the ideal in k[X1, . . . , Xn, Y ] generated by I and g, and consider the
affine algebraic set W = V(J) ⊆ An+1.

Every point of (x1, . . . , xn, y) ∈ W satisfies f(x1, . . . , xn) 6= 0 (necessary so that
f(x1, . . . , xn)y can equal 1). Since I ⊆ J , points ofW also satisfy (x1, . . . , xn) ∈ V .
Therefore, if π : An+1 → An is the projection map (forgetting the Y coordinate),
then

π(W ) ⊆ {(x1, . . . , xn) ∈ V : f(x1, . . . , xn) 6= 0}.
Since f ∈ I(V ), this set is empty.

This implies that W itself is empty. Therefore, by the Weak Nullstellensatz,
J = k[X1, . . . , Xn, Y ].

In particular, 1 ∈ J and thus
1 = a+ bg for some a ∈ I.k[X1, . . . , Xn, Y ], b ∈ k[X1, . . . , Xn, Y ].

Expand out a and b as sums over powers of Y :
a =

∑
j≥0

ajY
j where aj ∈ I,

b =
∑
j≥0

bjY
j where bj ∈ k[X1, . . . , Xn].

Expanding the equation 1 = a + bg and picking out the terms of degree j in Y ,
we get:

1 = a0 − b0 for j = 0,
0 = aj + bj−1f − bj for j ≥ 1.

By induction on j, these imply that
bj ∈ I − f j for all j ≥ 0

(where I − f j means the coset {t− f j : t ∈ I}.
But b is a polynomial, so bj = 0 once j gets large enough. Thus for some j, we

get 0 ∈ I − f j, that is, f j ∈ I. This proves that f ∈ rad I. �
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11. Proof of the Weak Nullstellensatz

We can restate the Weak Nullstellensatz in elementary terms as: if f1, . . . , fm ∈
k[X1, . . . , Xn] are a finite set of polynomials, and the ideal I which they gen-
erate is not the whole polynomial ring, then there exists a common solution
(x1, . . . , xn) ∈ kn to the equations

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0.
We prove this in two steps:

(1) there exists some larger field K containing k such that these equations
have a common solution in Kn.

(2) if the equations have a common solution in Kn, then they also have a
common solution in kn.

Finding a solution in a bigger field.
The proof of step (1) is fairly short, and relies on Zorn’s lemma.

Lemma 11.1. Let f1, . . . , fm be polynomials in k[X1, . . . , Xn], such that the ideal
I = (f1, . . . , fm) is not equal to k[X1, . . . , Xn].

Then there exists a field K which is a finitely generated extension of k such
that the equations

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0
have a common solution (x1, . . . , xn) ∈ Kn.

Proof. Because I 6= k[X1, . . . , Xn], we can use Zorn’s lemma to show that I is
contained in some maximal ideal M ⊆ k[X1, . . . , Xn]. (This is a natural way to
start: we are trying to show that V(I) has a point, and last time we saw that
points in V(I) correspond to maximal ideals in k[X1, . . . , Xn] containing I. We
can’t just quote the correspondence from the previous lecture because we used the
Nullstellensatz in proving that correspondence, but this justifies why obtaining a
maximal ideal is a good first step.)

Let K = k[X1, . . . , Xn]/M . Let x1, . . . , xn denote the images of X1, . . . , Xn

in K. K is a field because M is a maximal ideal, and it is finitely generated as an
extension of k because it is generated by x1, . . . , xn.

Since fj(X1, . . . , Xn) ∈ I ⊆ M , we get that fj(x1, . . . , xn) = 0 in K for each j.
Thus (x1, . . . , xn) is the required common solution to f1, . . . , fm in Kn. �

Shrinking the field required. Before proving step (2), we begin by quoting an
algebraic result.

Lemma 11.2. Let k be an algebraically closed field and let K be a finitely
generated extension field of k. Then there exist t1, . . . , td, u ∈ K such that
(i) K = k(t1, . . . , td, u);
(ii) t1, . . . , td are algebraically independent over k (that is, there is no non-zero

polynomial in d variables with coefficients in k whose value at (t1, . . . , td) is
zero); and
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(iii) u is algebraic over k(t1, . . . , td) (that is, there exists a non-zero polynomial
in one variable with coefficients in the field k(t1, . . . , td) which is zero at u).

Proof. This follows from the primitive element theorem in field theory. For a
full proof, see Proposition A.7 in the Appendix of Shafarevich, Basic Algebraic
Geometry 1. �

This proposition has a nice geometric interpretation: every finitely generated
extension of k is isomorphic to the field of fractions of a hypersurface. We need to
use the Nullstellensatz to prove this geometric interpretation, so that is postponed
until after we have finished the proof of the Nullstellensatz.

Theorem 11.3. Let k be an algebraically closed field and let K be a finitely
generated extension field of k. Let f1, . . . , fm ∈ k[X1, . . . , Xn].

Suppose there exists a common solution (x1, . . . , xn) ∈ Kn to the equations

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0.

Then there exists a common solution (y1, . . . , yn) ∈ kn to the equations

f1(y1, . . . , yn) = · · · = fm(y1, . . . , yn) = 0.

Proof. Write K = k(t1, . . . , td, u) as in Lemma 11.2.
Let K ′ = k(t1, . . . , td). Because t1, . . . , td are algebraically independent, we

can identify K ′ with k(T1, . . . , Td), the field of fractions of the polynomial ring
k[T1, . . . , Td]. This will allow us to substitute a vector z ∈ kd into an element
α ∈ K ′ and get out an element α(z) ∈ k, as long as the denominator of α does
not vanish at z.

We use two facts about the finite algebraic extension K/K ′:
(i) There exists a minimal polynomial p(U) ∈ K ′[U ] for u; that is, p(u) = 0,

p has leading coefficient 1, and p divides every other polynomial q(U) ∈ K ′[U ]
such that q(u) = 0.

(ii) Every element of K can be written in the form a(u) for some polynomial
a(U) ∈ K ′[U ].

Informal outline of proof. The idea of the proof is to consider the “almost hyper-
surface” H = {(z1, . . . , zd, s) ∈ kd+1 : p(z1, . . . , zd, s) = 0} (the “almost” is because
p is not a polynomial in k[T1, . . . , Td, U ] but rather may have denominators, so we
have to ignore the places where these denominators vanish). Then we construct a
rational map ϕ : H 99K V(f1, . . . , fm). The domain of definition of ϕ is an open
subset of an “almost hypersurface”, and we can easily check that this is non-empty.
Then a point in the image of ϕ gives us a point in V(f1, . . . , fm), as desired.

Return to formal proof. We apply fact (ii) to x1, . . . , xn ∈ K (our common solution
to f1 = · · · = fm = 0): we can write xi = ai(u) where ai(U) ∈ K ′[U ].

(In the informal outline, these ai ∈ k(T1, . . . , Td)[U ] define a rational map
ϕ : H 99K An). Next we check that the image of this rational map is contained in
V(f1, . . . , fm).)
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We know that (x1, . . . , xn) is a common solution to the polynomials f1, . . . , fm.
Hence

fj(a1(u), . . . , an(u)) = 0 in K for each j.
In other words, the single-variable polynomial fj(a1(U), . . . , an(U)) ∈ K ′[U ] has
u as a root. Therefore, fact (i) tells us that this polynomial is divisible by p(U).
Thus there exist polynomials q1, . . . , qm ∈ K ′[U ] such that

fj(a1(U), . . . , an(U)) = qj(U) p(U) in K ′[U ]. (*)

Now, if (z1, . . . , zd, s) ∈ kd+1 satisfies p(z1, . . . , zd, s) = 0, then (*) implies that
fj(a1(z, s), . . . , an(z, s)) = 0 for j = 1, . . . ,m

so long as all the denominators involved are non-zero. Thus we just have to find
(z, s) where all these denominators will be non-zero.

So consider the polynomials p(U), ai(U), qj(U): their coefficients are elements
of the field K ′ which we are identifying with the field of fractions of k[T1, . . . , Td].
Let σ ∈ k[T1, . . . , Td] denote the product of the denominators of all these fractions.
Because the denominator of a fraction is never zero, σ is not the zero polynomial
in. Therefore, there exists (z1, . . . , zd) ∈ kd such that

σ(z1, . . . , zd) 6= 0.
Then the denominators of the coefficients of p, ai, qj do not vanish at s1, . . . , sd,

so we can substitute (s1, . . . , sd) into each of these coefficients (as elements of
k(t1, . . . , td)) and get out values in k. Thus we get new polynomials

p̃(U), ãi(U), q̃j(U) ∈ k[U ].
The leading coefficient of p(U) is 1, which is unchanged by this process. So p̃(U)

has the same degree as p(U). In particular p̃(U) is not a constant polynomial.
Hence as k is algebraically closed, there exists s ∈ k such that p̃(s) = 0.

Let
yi = ãi(s) ∈ k.

Then (*) tells us that
fj(y1, . . . , yn) = q̃j(s) p̃(s) for each j.

But we chose s such that p̃(s) = 0, and so we conclude that (y1, . . . , yn) ∈ kn is a
common solution to

f1(y1, . . . , yn) = · · · = fm(y1, . . . , yn) = 0. �

Combining Lemma 11.2 and Theorem 11.3 proves the Weak Nullstellensatz.

Hypersurfaces and birational equivalence. Now we prove the geometrical
interpretation of Lemma 11.2.

Proposition 11.4. Let K be a finitely generated extension of k. Then there
exists an irreducible hypersurface H ⊆ Ad+1 for some d such that K is isomorphic
to the field of functions k(H).
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Corollary 11.5. Let V ⊆ An be an irreducible affine algebraic set. Then there
exists an irreducible hypersurface H ⊆ Ad+1 for some d such that V is birationally
equivalent to H.

Corollary 11.5 tells us that, even if V is a complicated algebraic set defined by
many equations, provided we only care about properties of V which are preserved
by birational equivalence, we can replace V by a simpler set defined by just one
equation, that is, a hypersurface. Note that it is not true that every irreducible
affine algebraic set is isomorphic to a hypersurface.
Proof of Proposition 11.4. Write K = k(t1, . . . , td, u) as in Lemma 11.2, and let
K ′ = k(t1, . . . , td). Let p(U) ∈ K ′[U ] be the minimal polynomial of u over K ′.

Each coefficient of p(U) is a fraction whose numerator and denominator are
polynomials in t1, . . . , td. We can multiply up by a suitable element of k[t1, . . . , td]
to clear the denominators, and also replace t1, . . . , td by indeterminates T1, . . . , Td
to get a polynomial g ∈ k[T1, . . . , Td, U ] such that

g(t1, . . . , td, u) = 0 in the field K.
Assuming we multiplied up by a lowest common denominator for the coefficients
of p, g is irreducible.

Let H be the hypersurface V(g) ⊆ Ad+1. Because g is irreducible, it generates
a radical ideal in k[X1, . . . , Xn] and so the (Strong) Nullstellensatz implies that

I(H) = (g).
Thus the coordinate ring is given by

k[H] = k[T1, . . . , Td, U ]/(g).
There is a k-algebra homomorphism α : k[T1, . . . , Td, U ]→ K defined by

T1 7→ t1, . . . , Td 7→ td, U 7→ u.

A little algebra (using Gauss’s lemma) shows that the kernel of α is generated
by g, so α induces an injection k[H] ↪→ K. Furthermore, the image of α generates
K as a field, so α induces an isomorphism from the fraction field of k[H] to K.

The fraction field of k[H] is the function field k(H). Thus we have shown that
k(H) ∼= k(V ). By Corollary 9.4, this implies that V is birationally equivalent
to H. �

Proof of Corollary 11.5. Apply Proposition 11.4 to K = k(V ). �
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12. Projective algebraic sets

Projective space.
Projective space consists of affine space together with “points at infinity,” one

for each direction. The purpose for adding extra points is that it avoids special
cases where a point “disappears to infinity.” For example, a pair of parallel lines do
not intersect in affine space but they do intersect at a point at infinity in projective
space.

Definition. Projective n-space, Pn, is the quotient of kn+1 \{(0, . . . , 0)} by the
equivalence relation

(x0, . . . , xn) ∼ (λx0, . . . , λxn) where λ ∈ k \ {0}.

We call a representative for an equivalence class the homogeneous coordi-
nates of that point in Pn (and there are many choices for each point, by scaling
by λ). To avoid confusion between homogeneous coordinates for Pn and ordinary
coordinates for An, we usually write homogeneous coordinates as

[x0 : x1 : · · · : xn].
Observe that we can embed An into Pn by the map

(x1, . . . , xn) 7→ [1 : x1 : · · · : xn].
Any other homogeneous coordinates where the first coordinate is non-zero can
be re-scaled to have first coordinate 1. So we are left with the points with first
coordinate equal to 0: these are the “points at infinity.” A point [0 : x1 : · · · : xn]
can be seen as a point in Pn−1, by just dropping the initial zero. Thus

Pn = An ∪ Pn−1.

Similarly
P1 = A1 ∪ {a point}.

Thinking about projective space as affine space plus points at infinity can
be useful if we want to make use of our geometric intuition about affine space
or the algebraic tools we have developed for working with affine algebraic sets.
On the other hand, thinking about projective space in terms of homogeneous
coordinates emphasises that all points of projective space look the same: we
can only distinguish points at infinity from points in affine space after choosing
a convention for how we embed An into Pn (for example, we could have used
[x1 : · · · : xn : 1] instead); throughout this lecture we will use the convention
above.

Projective algebraic sets.
A projective algebraic set is a subset of projective space defined by the vanishing

of a finite list of polynomials. What does it mean for a polynomial to vanish at
a point in projective space? Because a single point in Pn can be represented by
many different homogeneous coordinates, it does not make sense to evaluate a
polynomial in k[X0, . . . , Xn] at a point of Pn. We have to restrict attention to
homogeneous polynomials.
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Definition. A polynomial f ∈ k[X0, . . . , Xn] is homogeneous if every term of
f has the same degree.

For example, X3
0 + X2

0X1 + 3X3
2 −X0X1X2 is homogeneous of degree 3 while

X0X1 −X2 is not homogeneous because it has a term of degree 2 and a term of
degree 1.

If [x0 : · · · : xn] and [y0 : · · · : yn] represent the same point p ∈ Pn, then
(x0, . . . , xn) = λ(y0, . . . , yn) with λ ∈ k \ {0}.

Hence if f ∈ k[X0, . . . , Xn] is a homogeneous polynomial of degree d, then
f(x0, . . . , xn) = λdf(y0, . . . , yn)

Thus the actual value of f at p is not well-defined, but it is well-defined whether
or not f is zero at p.

Definition. A projective algebraic set is a set of the form
{[x0 : · · · : xn] ∈ Pn : f1(x0, . . . , xn) = 0, . . . , fm(x0, . . . , xn) = 0}

for some finite list of homogeneous polynomials f1, . . . , fm ∈ k[X0, . . . , Xn].

By definition, a projective algebraic set is the vanishing of finitely many homo-
geneous polynomials. We can use the Hilbert Basis Theorem to show that the
vanishing set of an infinite collection of homogeneous polynomials is a projective
algebraic set. (This is similar to the analogous result for affine algebraic sets, but
a little trickier due to the word “homogeneous.”)

Example. An example of a projective algebraic set is
V = {[w : x : y] ∈ P2 : wx− y2 = 0}.

What is V ∩A2? (Using the embedding A2 → P2 which we considered before.) To
find this, we just substitute w = 1 into the equation for V :

V ∩ A2 = {(x, y) ∈ A2 : x− y2 = 0},
that is, a parabola.

We can also work out the intersection of V with the “P1 at infinity:” it is points
where w = 0. Substituting that into the equation for V , we get

{[x : y] ∈ P1 : −y2 = 0} = {[1 : 0]}.
Thus V consists of the parabola together with a point at infinity “in the direction
(1, 0)”, i.e. along the x-axis (informally, the two arms of the parabola close up at
infinity).

Homogenisation.

Example. We would like to reverse this process, and go from an affine algebraic
set to a projective algebraic set. Consider the affine hyperbola H = {(x, y) ∈ A2 :
xy − 1 = 0}.

We need to turn the polynomial XY − 1 into a homogeneous polynomial, using
a new variable W . To do this, note that the highest degree term in XY − 1 has
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degree 2. We multiply each term by an appropriate power of W to get all terms
of degree 2: thus we get XY −W 2 = 0. Let

H ′ = {[w : x : y] ∈ A2 : xy − w2 = 0}.
When w = 1, we can substitute that in and see that we get back H ′. When

w = 0, the equation becomes xy = 0, so we now get two points at infinity: either
x = 0, giving the point [0 : 0 : 1] ∈ P2, or y = 0, giving the point [0 : 1 : 0] ∈ P2.
Thus

H ′ = H ∪ {[0 : 0 : 1], [0 : 1 : 0]}.
Geometrically, H ′ consists of H together with points at infinity along the x- and
y-axes. These axes are the asymptotes of H.

Example. Here’s a more complex example (the twisted cubic curve). Let
C = {(t, t2, t3) ∈ A3} = V(Y −X2, Z −XY ).

Homogenising the polynomials, we get
C ′ = {[w : x : y : z] ∈ P3 : wy − x2 = wz − xy = 0}.

It is still true that we can reverse this by just setting w = 1, so C ′ ∩ A3 = C.
But what happens at infinity? Subsituting in w = 0, we get

{[0 : x : y : z] ∈ P3 : −x2 = −xy = 0} = {[0 : 0 : y : z] ∈ P3}.
Thus the intersection of C ′ with the plane at infinity is a copy of P1. This is not

what we should expect, if C ′ were the smallest possible projective algebraic set
containing C: the dimension of the intersection with the plane at infinity should be
smaller than the dimension of the initial affine algebraic set (speaking informally).

In fact, the smallest possible projective algebraic set containing C ′ is
C ′′ = {[w : x : y : z] ∈ P3 = wy − x2 = wz − xy = zx− y2 = 0}.

The extra polynomial involves only x, y, z and is in the ideal generated by Y −X2

and Z −XY . You can calculate:
C ′′ = C ∪ {[0 : 0 : 0 : 1]}.

(I am not giving a procedure to find the smallest projective algebraic set containing
a given affine algebraic set - I just assert that this happens to work in this case.
There is an algorithm but you would not want to have to use it by hand.)

The process we went through above to obtain V ′ from V and H ′ from H can
be generalised.

Definition. For any polynomial f ∈ k[X1, . . . , Xn], we define the homogenisa-
tion of f to be the polynomial in f̄ ∈ k[X0, . . . , Xn] obtained by the following
procedure: let d be the maximum degree of terms of f . Then multiply each term
of f by Xd−e

0 , where e is the degree of this term in f .
For example: if f(X1, X2, X3) = X3

1 + 4X1X2X3−X2
1 −X2

2 + 5X3 + 8, then the
homogenisation is

f̄(X0, X1, X2, X3) = X3
1 + 4X1X2X3 −X2

1X0 −X2
2X0 + 5X3X

2
0 + 8X3

0 .
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Let V ⊆ An be an affine algebraic set. Let W ⊆ Pn be the set defined by the
homogenisations of all polynomials in I(V ). Then W is the smallest projective
algebraic set containing V . When we substitute x0 = 1 into the polynomials
defining W , we just get back I(V ), so

W ∩ {[1 : x1 : · · · : xn]} = V.

The example above shows that if we just use homogenisations of a generating
set, instead of all of I(V ), we still get a projective algebraic set V ′ such that
V ′ ∩ An = V , but it might not be the smallest such set.

Zariski topology on Pn.
We can define the Zariski topology on Pn by saying that the closed subsets are

the projective algebraic sets. We have just shown that the Zariski topology on An

is the subspace topology coming from the Zariski topology on Pn.
Note that the “smallest projective algebraic set containing V ” which we just

described is the same as the closure of V in the Zariski topology on Pn.

Projective Nullstellensatz.
Which homogeneous ideals can occur as the ideal of functions vanishing on

a projective algebraic set? Clearly they have to be radical ideals. Is there a
projective version of the Nullstellensatz?

Yes, but it turns out that there is an exceptional case to deal with. Consider the
homogeneous ideal I1 = (X0, . . . , Xn) ⊆ k[X0, . . . , Xn]. The only solution in kn+1

to the equations x0 = 0, . . . , xn = 0 is (0, . . . , 0). But this is not the homogeneous
coordinates of any point in Pn. So the projective algebraic set defined by I1 is the
empty set. Thus the ideals I1 and k[X0, . . . , Xn] both define the empty set in Pn,
even though they are both radical homogeneous ideals. So we have to modify the
statement of the Nullstellensatz slightly from the affine case.

This turns out to be the only special case.

Proposition 12.1 (Projective Weak Nullstellensatz). Let I ⊆ k[X0, . . . , Xn]
be a homogeneous ideal such that rad I is not equal to either k[X0, . . . , Xn] or
(X0, . . . , Xn). Then the projective algebraic set defined by I is non-empty.

Proof. If the projective algebraic set defined by I in Pn is empty, then the affine
algebraic set V(I) ⊆ An+1 must be either ∅ or {(0, . . . , 0)}. We can conclude by
applying the usual (strong) Nullstellensatz to the affine set V(I). �
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13. Regular maps between projective algebraic sets

Bijection between homogeneous ideals and algebraic sets.
Last time we saw the Projective Weak Nullstellensatz, and we saw that the

radical homogeneous ideal (X0, . . . , Xn) defines the empty projective algebraic set,
the same as (1). However, this turns out to be the only exception to the bijection
between radical homogeneous ideals and projective algebraic sets:

Theorem 13.1. The map sending a homogeneous ideal to the corresponding
projective algebraic set is a bijection between the following sets:

radical homogeneous ideals
in k[X0, . . . , Xn]

other than (X0, . . . , Xn)

 −→ {projective algebraic sets in Pn} .

Proof. Apply the affine Nullstellensatz to the set in An+1 defined by the same
ideal. �

A remark on compactness.
Over the complex numbers, every projective algebraic set is compact in the

analytic topology. This is because they are closed subsets of PnC, which is compact.
(In the Zariski topology, the notion of compactness is not very interesting: every
algebraic set is compact in the Zariski topology, even affine algebraic sets. Affine
algebraic sets do not behave in ways matching our intuition about compactness:
this intuition only works in Hausdorff spaces.)

There is a converse to this, which tells us that there is a very close relationship
between analytic and algebraic geometry in PnC:

Theorem 13.2 (Chow’s theorem). Let V be an analytic subset of PnC which is
closed in the analytic topology. Then V is a projective algebraic set.

I won’t define analytic subsets here, but roughly it means a set defined by
zeroes of holomorphic functions. This theorem requires too much comlpex analytic
geometry to prove here.

One can prove analytically that every holomorphic function on a connected
compact complex manifold is constant (for example, this holds on the Riemann
sphere, which is equal to P1

C). Polynomials are holomorphic, so every regular
function on a connected projective algebraic set over C is constant. Once we
define regular functions on projective algebraic sets, it will turn out that the same
is true over any field.

Regular maps between projective algebraic sets.
We want to define regular maps between projective algebraic sets. Let V ⊆ Pm

and W ⊆ Pn be projective algebraic sets. We expect a regular map ϕ : V → W
to be a function which can be expressed as polynomials in the homogeneous
coordinates:

ϕ([x0 : · · · : xm]) = [f0(x0, . . . , xm) : · · · : fn(x0, . . . , xm)].
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In order for this to be a well-defined function, all the fi must be homogeneous
polynomials of the same degree, so that

[f0(λx0, . . . , λxm) : · · · : fn(λx0, . . . , λxm)]
= [λdf0(x0, . . . , xm) : · · · : λdfn(x0, . . . , xm)].

All the coordinates are multiplied by λd, so this is the same point in Pn as
[f0(x0, . . . , xm) : · · · : fn(x0, . . . , xm)].

There is another condition which must be imposed to get a well-defined function
V → Pm: we must never have

f0(x0, . . . , xn) = · · · = fm(x0, . . . , xn) = 0

because [0 : · · · : 0] is not the homogeneous coordinates of a point in Pm.
This is a very strong condition and there are too few lists of polynomials which

satisfy it. However, we can get round it to some extent by imitating rational maps
between affine algebraic sets, and allowing different lists of polynomials to define
the map at different points (so that, at each point, there is some list of polynomials
which is always non-zero). The homogeneous nature of the coordinates allows us
to do this in such a way that the different lists of polynomials define the same
map wherever they overlap.

To help explain this, we consider an example.

Example. Let V be the projective closure of the parabola, i.e.

V = {[w : x : y] ∈ P2 : wy = x2}.

Let
V ′ = V ∩ {[w : x : y] : w 6= 0} = {(x, y) ∈ A2 : y = x2}.

There is a regular map ϕ′ : V ′ → A1 given by

ϕ′(x, y) = x.

Does this extend to a regular map ϕ : V → P1? (We guess it should send the point
at infinity [0 : 0 : 1] ∈ V to the point at infinity [0 : 1] ∈ P1.)

To attempt to construct such a map, write ϕ′ in homogeneous coordinates using
the embedding A2 ↪→ P2:

[1 : x : y] 7→ [1 : x].
Now we homogenise, i.e. multiply by powers of the “extra” coordinate w to make
all the polynomials homogeneous of degree 1:

[w : x : y] 7→ [w : x].

This is maps [0 : 0 : 1] to [0 : 0] which is not allowed! But we can fix this
by expressing the same map differently. Using the homogeneous nature of the
coordinates, and the equation x2 = wy defining V , we have

[w : x] = [wx : x2] = [wx : wy] = [x : y]

whenever the values we multiplied/divided by (w and x) are non-zero.
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The expression [x : y] is well-defined at [0 : 0 : 1], with value [0 : 1]. On the
other hand, [x : y] gives [0 : 0] at the point [1 : 0 : 0] ∈ V , so we cannot use [x : y]
alone to define a map V → P1.

At least one of these two expressions is defined everywhere on V , and they agree
where they overlap, so the two expressions together give a well-defined regular
map ϕ : V → P1:

ϕ([w : x : y]) =

[w : x] if w 6= 0,
[x : y] if y 6= 0.

(*)

Note that each expression is defined on a Zariski open subset of V . This
is important because it is how we ensure that the value of ϕ at each point is
polynomially related to its value at nearby points. (Open sets are the natural
way to talk about “nearby points” in a topological space. This still applies in the
Zariski topology, even though open sets are very big.)

Note that questions 5 and 6 on problem sheet 2 give examples of regular maps
defined everywhere except at a single point of an affine algebraic set, where there
is an obvious value the map “should” take at the missing point, but the map is
not regular at that point because there is no way to extend it to that point using
polynomials. This is why we are not allowed just to write down polynomials on
arbitrary (non-open) subsets of V and claim they define a regular map.

The formal definition of a regular map between projective algebraic sets V ⊆ Pm
and W ⊆ Pn is:

Definition. A regular map ϕ : V → W is a function V → W such that for every
point x ∈ V , there exists a Zariski open set U ⊆ V containing x and a sequence
of polynomials f0, . . . , fn ∈ k[X0, . . . , Xm] such that:
(i) f0, . . . , fn are homogeneous of the same degree;
(ii) for every y ∈ U , f0, . . . , fn are not all zero at y;
(iii) for every y = [y0 : · · · : ym] ∈ U , ϕ(y) = [f0(y0, . . . , ym) : · · · : fn(y0, . . . , ym)].

In practice, every regular map can be written down by specifying lists of poly-
nomials on just finitely many open sets, like ϕ (this follows ultimately from the
Hilbert Basis Theorem). To check that a purported definition like (*) really does
define a regular map V → W , you have to check:

(1) each set on which an expression is defined is Zariski open;
(2) an expression never gives [0 : · · · : 0] on its associated set;
(3) two expressions agree wherever they are both defined;
(4) the image of the map is contained in W .

Example. As another example, let’s try to extend the inverse of ϕ from affine to
projective algebraic sets. On affine algebraic sets, the inverse of ϕ′ is ψ′ : A1 → V ′

given by
ψ′(t) = (t, t2).

In projective coordinates, this is
[1 : t] 7→ [1 : t : t2].
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Homogenising (inserting powers of s to make all the polynomials on RHS degree 2),
we get

[s : t] 7→ [s2 : st : t2].
Now s2, st, t2 are never simultaneously zero for [s : t] ∈ P1, so in this case the
single expression [s2 : st : t2] is enough to define a regular map ϕ : P1 → V (note
that the image of ϕ is indeed contained in V ).

The two maps ϕ : V → P1 and ψ : P1 → V are inverses, so we conclude that the
projective parabola V is isomorphic to P1.

Note that this homogenisation procedure does not always work. There are
regular maps between affine algebraic sets which it is impossible to extend to
regular maps between their projective closures (there are points for which it is
impossible to avoid sending them to [0 : · · · : 0]).
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14. Quasi-projective algebraic sets and rational maps

Regular maps equal on a dense subset.
We already proved the following lemma for regular maps between affine algebraic

sets. It is even more useful for regular maps between projective algebraic sets (we
will need it in the definition of rational maps).

Lemma 14.1. Let ϕ, ψ : V → W be regular maps. If there exists a Zariski dense
subset A ⊆ V such that ϕ|A = ψ|A, then ϕ = ψ.

The lemma is especially useful if V is irreducible, because then Zariski open
subsets of V are dense. So the lemma tells us that, given a list of polynomials on
a Zariski open subset of V , there is at most one regular map which is given by
that list of polynomials on that set.
Proof. Let Z = {x ∈ V : ϕ(x) = ψ(x)}. By hypothesis, Z contains a dense subset
of V . Hence in order to show that Z = V , it suffices to show that Z is closed in V .

We will use the following topological fact:

Fact. Let S be any topological space. Let {Uα} be a collection of open subsets of
S whose union is all of S. Let Z be any subset of S such that Z ∩ Uα is closed in
the subspace topology on Uα for every α. Then Z is closed as a subset of S.

From the definition of regular maps, we know that we can cover V by Zariski
open sets Uα such that on each Uα, both ϕ and ψ are defined by sequences of
homogeneous polynomials:

ϕ|Uα = [fα,0 : · · · : fα,m], ψ|Uα = [gα,0 : · · · : gα,m].
By the topological fact, it suffices to show that Z ∩ Uα is closed in the subspace
topology on Uα for every α.

Now
Z ∩ Uα = {x ∈ Uα : [fα,0(x) : · · · : fα,m(x)] = [gα,0(x) : · · · : gα,m(x)]}.

This is the same as the set of x ∈ Uα where the vectors (fα,0(x), . . . , fα,m(x)) and
(gα,0(x), . . . , gα,m(x)) are proportional (for any choice of homogeneous coordinates
for x). A little algebra shows that this condition is equivalent to

fα,i(x)gα,j(x)− fα,j(x)gα,i(x) = 0 for all i, j ∈ {0, . . . ,m}.
This last condition is given by homogeneous polynomials, and therefore defines a
closed subset in the subspace topology on Uα. �

Quasi-projective algebraic sets.
So far, we have defined affine algebraic sets and projective algebraic sets, as

separate types of object. It is very convenient to have a single notion that unifies
both affine and projective algebraic sets (for example to save us from having
to prove a lemma for affine algebraic sets, then the same lemma for projective
algebraic sets).

Definition. A quasi-projective algebraic set is the intersection between an
open subset and a closed subset of Pn (in the Zariski topology).
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A projective algebraic set is quasi-projective (just take the open subset to be Pn
itself). An affine algebraic set is quasi-projective: it is the intersection between
An (which is open in Pn) and a projective algebraic set V . There are other
quasi-projective algebraic sets, for example A1 \ {0} which is an open subset of P1.

We define a regular map between quasi-projective algebraic sets by the same
definition as a regular map between projective algebraic sets.

If V and W are affine algebraic sets, we now have two ways to define regular
maps V → W :
(a) the original definition of regular maps between affine algebraic sets;
(b) view V and W as quasi-projective algebraic sets, and use the new definition

of regular maps between quasi-projective algebraic sets.
Fortunately, these two definitions turn out to be equivalent. One has to do a bit
of work to check this (the problem is that a regular map of affine algebraic sets
must be defined by the same list of polynomials at every point, but a regular map
of quasi-projective algebraic sets may be defined by the same polynomials at every
point; proving that actually one list of polynomials is enough if the set happens
to be affine is similar to the proof of Lemma 8.2).

This gives us for free a notion of regular maps from a projective algebraic set
to an affine algebraic set or vice versa: just view them both as quasi-projective
algebraic sets. For example, we can now define a regular function on a projective
algebraic set V to be a regular map V → A1 (thus it is a function from the algebraic
set V taking values in the base field k). As remarked last lecture, we will later
prove that the only regular functions on a projective algebraic set are the constants.

We can now make rigorous the claim that “A1 \ {0} looks the same as the affine
hyperbola H = {(x, y) ∈ A2 : xy = 1}.” The set

A1 \ {0} = P1 \ {[1 : 0], [0 : 1]}
is a Zariski open subset of P1, because its complement is finite. Hence A1 \{0} is a
quasi-projective algebraic set. The map ϕ : A1 \ {0} → H given by ϕ(t) = (t, 1/t)
can be written in homogeneous coordinates as

ϕ([1 : t]) = [1 : t : 1/t] = [t : t2 : 1]
so homogenising, we get

ϕ([s : t]) = [st : t2 : s2].
So long as [s : t] ∈ A1 \ {0}, this does give a point in

H = {[w : x : y] ∈ P2 : xy = w2} ∩ A2

so ϕ is a regular map A1 \{0} → H. The projection (x, y) 7→ x is a regular inverse
to ϕ. Hence A1 \ {0} and H are isomorphic as quasi-projective algebraic sets.

Varieties.
As mentioned previously, we use the word “variety” to mean an algebraic set

considered up to isomorphism, not caring about how it is embedded into affine
or projective space. For example, A1 \ {0} is isomorphic (as a quasi-projective
algebraic set) to the affine algebraic set H, so we may say that A1 \{0} is an affine
variety, even though A1 \ {0} is definitely not an affine algebraic set.
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There exist quasi-projective algebraic sets which are not isomorphic to anything
either projective or affine, for example A2 \ {(0, 0)} (see problem sheet 3).

Rational maps between quasi-projective algebraic sets.
Let V and W be irreducible quasi-projective algebraic sets. The formal defi-

nition of a rational map V 99K W looks quite complicated, but the underlying
idea is the same as for regular maps: a rational map is almost a regular map,
except that it is allowed to have some points where it is not defined. Rational
maps of affine algebraic sets are non-regular at points where the denominator is
zero; for quasi-projective algebraic sets, they are non-regular at points where the
coordinates of the image become [0 : · · · : 0]. (Note that there is no need to
use fractions in the definition of rational maps between quasi-projective algebraic
sets: because our coordinates are homogeneous, we can always multiply up by a
common denominator.)

Somehow we have to make a definition which takes account of the fact that
rational maps are defined by different lists of polynomials at different points. But
unlike with regular maps of projective algebraic sets, we can’t tie the different
expressions together into a single object by saying “a rational map is a function
V → W such that ...” because a rational map is not a function V → W .

Instead we define rational maps as equivalence classes for a certain equivalence
relation. Note that this happens under the hood in defining rational functions on
affine algebraic sets too: they are elements of a field of fractions, and the field of
fractions of an integral domain R is defined as the set of equivalence classes in the
set

{(a, b) ∈ R2 : b 6= 0}
for the equivalence relation

(a, b) ∼ (c, d) if ad = bc.

In the ring R = Z, we can choose a unique representative for each fraction by
reducing to “lowest terms.” But if R is not a UFD, there are no “lowest terms”
representatives – this matches the fact that we might need different expressions
to define a rational map at different points.

Definition. Let V ⊆ Pm and W ⊆ Pn be irreducible quasi-projective algebraic
sets.

Let S denote the set of sequences (f0, . . . , fn) ∈ k[X0, . . . , Xm]n+1 such that:
(1) f0, . . . , fn are homogeneous of the same degree;
(2) f0, . . . , fn are not all identically zero on V (note that this looks a little like

the b 6= 0 condition in defining the field of fractions);
(3) there exists a non-empty Zariski open set A ⊆ V such that, for all x ∈ A,

[f0(x) : · · · : fn(x)] ∈ W .
Define an equivalence relation ∼ on S by: (f0, . . . , fn) ∼ (g0, . . . , gn) if

[f0(x) : · · · : fn(x)] = [g0(x) : · · · : gn(x)] ∈ Pn
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for all x ∈ V where both expressions make sense. We could write this more
algebraically as: (f0, . . . , fn) ∼ (g0, . . . , gn) if

figj = fjgi for all i, j.
Observe that this resembles the equivalence relation used in defining the field of
fractions.

You can check that ∼ is an equivalence relation using Lemma 14.1 and the fact
that V is irreducible.

A rational map ϕ : V 99K W is an equivalence class in S for ∼.

We usually specify rational maps by just giving one representative [f0 : · · · : fn]
in S.
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15. More on rational maps

Domain of definition.

Definition. A rational map ϕ : V → W is regular at a point x ∈ V if there
exists at least one list of polynomials (f0, . . . , fn) ∈ S representing ϕ such that

[f0(x) : · · · : fn(x)] 6= [0 : · · · : 0] and [f0(x) : · · · : fn(x)] ∈ W.

If ϕ is regular at x, then the equivalence relation ∼ ensures that the value ϕ(x)
is well-defined (independent of the choice of polynomials representing ϕ, as well
as independent of the choice of homogeneous coordinates for x).

Just as for affine algebraic sets, we define the domain of definition of a
rational map to be the set of points where it is regular.

Note that the domain of definition of a rational map can change if we change
the target set W . For example, consider the map P1 → P2 defined by

[s : t] 7→ [s2 : st : t2].
This is regular at every point. We could interpret the same formula as defining a
rational map P1 99K W where W ⊆ P2 is the open set

W = {[w : x : y] : w 6= 0}.
As a rational map P1 99K W , this is not regular at the point [0 : 1] because this
point maps to [0 : 0 : 1] 6∈ W .

Lemma 15.1. Let ϕ : V 99K W be a rational map. The domain of definition of ϕ
is a non-empty Zariski open subset of V .

Proof. Similar to the affine case (Lemma 8.1). �

It follows immediately from the definition of regular maps between quasi-
projective algebraic sets that if a rational map is regular at every point, then
it is a regular map. (In the affine case (Lemma 8.2), we had to work to prove that
if a rational map is regular at every point, then there is a single polynomial ex-
pression which defines the map everywhere. In the quasi-projective case, we don’t
need to do this because our definition of regular map allows different expressions
at different points.)

Example. Let C denote the affine algebraic set
C = {(x, y) ∈ A2 : y = x3}.

This has projective closure
C = {[w : x : y] ∈ P2 : w2y = x3} = C ∪ {[0 : 0 : 1]}.

Consider the regular map of affine algebraic sets ϕ : C → A1 given by
ϕ(x, y) = x.

If we try to extend this to a map of projective algebraic sets ϕ : C → P1, we would
say that for points [1 : x : y] ∈ C ⊆ C,

ϕ([1 : x : y]) = [1 : x]
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and this homogenises to
ϕ([w : x : y]) = [w : x].

Thus ϕ is a rational map C 99K P1.
The above expression for ϕ is not defined at the point [0 : 0 : 1] ∈ C. We can

prove that there is no other expression for ϕ which is defined at that point, and
so ϕ is not regular at [0 : 0 : 1] (see problem sheet 3, question 3).

Thus a regular map of affine algebraic sets extends to a rational map between
their projective closures, but the extended map is not necessarily regular at the
points at infinity.

Birational maps.
Just as in the affine case, if we have irreducible quasi-projective sets V , W , T

and rational maps ϕ : V 99K W and ψ : W 99K T , if the image of ϕ is dense in W ,
then the composite ψ ◦ ϕ is a rational map V 99K T .

The following definitions are the same as the affine case:

Definition. A rational map ϕ : V 99K W is dominant if its image is dense in W .
A rational map ϕ : V 99K W is a birational equivalence if it is dominant and

there exists a dominant rational map ψ : W 99K V such that ψ ◦ ϕ = idV and
ϕ ◦ ψ = idW (where these composite rational maps are defined).

Irreducible algebraic sets V and W are birational if there exists a birational
equivalence V 99K W .

Note that An is birational to Pn: consider the regular map
ϕ : An → Pn : (x1, . . . , xn) 7→ [1 : x1 : · · · : xn]

and the rational map
ψ : Pn 99K An : [x0 : · · · : xn] 7→ (x1/x0, . . . , xn/x0).

Each of these is dominant and composing them in either direction gives the identity,
so these are birational equivalences.

Observe that ϕ is an isomorphism from An to an open subset of Pn. We can
generalise this to the following stronger result, which makes precise the intuition
that varieties are birational if and only if they are the same “almost everywhere.”

Lemma 15.2. Irreducible quasi-projective varieties V and W are birational if
and only if there exist non-empty Zariski open subsets A ⊆ V and B ⊆ W such
that A is isomorphic to B (as quasi-projective varieties).

Proof. Let ϕ : V 99K W and ψ : W 99K V be an inverse pair of rational maps. Let
A1 = domϕ and B1 = domψ. B1 is a non-empty open subset of W .

Since ϕ induces a continuous map A1 → W , A = ϕ−1
|A1

(B1) is an open subset of
V . Furthermore, since ϕ is dominant, its image intersects the open set B1 ⊆ W .
Therefore A is non-empty.

Similarly B = ψ−1
|B1

(A1) is a non-empty open subset of W .
One can now check that ϕ|A and ψ|B form an inverse pair of isomorphisms

between A and B. �
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If V is a quasi-projective algebraic set, we define a rational function on V
to be a rational map ϕ : V 99K A1. By definition, this is the same as a rational
map ϕ′ : V 99K P1 except that we declare ϕ to be non-regular at points where
ϕ′(x) =∞ = [0 : 1] ∈ P1. We can therefore say

ϕ(x) = [f(x) : g(x)] = [1 : g(x)/f(x)] = g(x)
f(x) ∈ A1

whenever f(x) 6= 0, for suitable polynomials f, g. Of course, as always with rational
maps, we might need to use different polynomials to evaluate it at different points.

The rational functions on V form a field k(V ). Just as in the affine case, V is
birational to W if and only if k(V ) is k-isomorphic to k(W ).

Linear spaces in Pn.
We want to define a fundamental example of a rational map: projection from a

point to a hyperplane. First, we need to make a few other definitions.

Definition. A hyperplane in Pn is the projective algebraic set defined by a single
homogeneous linear equation:

H = {[x0 : · · · : xn] ∈ Pn : h0x0 + · · ·+ hnxn = 0}
for some h0, . . . , hn ∈ k, not all zero.

More generally, a linear subspace of Pn is a subset defined by any set of
homogeneous linear equations.

Examples of linear subspaces are Pn itself (empty set of equations), ∅ (too many
equations), and singletons. We can’t define the singleton {[p0 : · · · : pn]} by the
equations x0 = p0, . . . , xn = pn because these are not homogeneous. Instead,
we can write homogeneous equations asserting that the ratios between pairs of
coordinates are correct:

{[p0 : · · · : pn]} = {[x0 : · · · : xn] ∈ Pn : pixj = pjxi for all i, j}.
If Λ is a linear subspace of Pn, then the affine cone C(Λ) (the set of points in

An+1 satisfying the same equations as Λ) is a vector subspace of kn+1.
As a vector space, we know what is meant by dimC(Λ). We define

dim Λ = dimC(Λ)− 1.
(We have not yet defined the dimension of an arbitrary algebraic set; this definition
is only for linear subspaces of projective space. The −1 is because C(Λ) contains
a line for each point in Λ.) For example, Pn has dimension n, a hyperplane has
dimension n− 1 and a point has dimension 0.

If Λ is a linear subspace of Pn of dimension d, then C(Λ) ∼= kd+1 (as a vector
space) and

Λ =
(
C(Λ) \ {0}

)
/(multiplying by scalars)

so Λ ∼= Pd.

Definition. A line in Pn is a linear subspace of dimension 1.
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16. Projections and products

Lines in Pn.

Lemma 16.1. For any two distinct points p, q ∈ Pn, there exists a unique line
Lpq through p and q.

Proof. One could prove this by saying: Pn can be written as a union An ∪ Pn−1,
and going through the cases p, q ∈ An; p, q ∈ Pn−1; p ∈ An and q ∈ Pn−1. In order
to make this into a full proof, we would need to check that a line in Pn, intersected
with An, is the same as the ordinary definition of a line in An (which is true!)

Instead we shall give a proof using linear algebra. A benefit of this proof is that
it gives a description of the homogeneous coordinates of points in the line Lpq.

Let p = [p0 : · · · : pn] and q = [q0 : · · · : qn]. The affine cones C(p) and C(q)
are the one-dimensional vector spaces of generated by (p0, . . . , pn) and (q0, . . . , qn)
respectively. Since p 6= q, these vector spaces are linearly independent so there is
a unique 2-dimensional vector subspace W ⊆ kn+1 which contains C(p) and C(q).
The image of W \ {0} in Pn is the unique line through p and q.

Explicitly: W consists of all linear combinations of the vectors (p0, . . . , pn) and
(q0, . . . , qn). It follows that

Lpq = {[p0s+ q0t : · · · : pns+ qnt] ∈ Pn : [s : t] ∈ P1}. �

Projections.
A fundamental example of a rational map is projection from a point to a

hyperplane. Let p = [p0 : · · · : pn] ∈ Pn and let H ⊆ Pn be a hyperplane such that
p 6∈ H. To simplify the calculations, we shall assume that

H = {[x0 : . . . : xn] ∈ Pn : xn = 0}.
Any line in Pn which is not contained in H meets H in exactly one point. This

is geometrically clear; one can prove it algebraically via linear algebra using the
affine cones, or by the following calculation:

Let x ∈ Pn \ {p}. Then
Lpx = {[p0s+ x0t : · · · : pns+ xnt] ∈ Pn : [s : t] ∈ P1}. (*)

Hence, to find Lpx ∩H, we need to choose [s : t] such that pns+ xnt = 0: we can
choose [s : t] = [xn : −pn] (note that pn 6= 0 because p 6∈ H, so we do not get
[0 : 0]). Substituting in to (*), the unique point of Lpx ∩H is

[p0xn − x0pn : · · · : pn−1xn − xn−1pn : 0].
The final 0 = pnxn− xnpn is what we expect for a point in H. Note that, if p 6= x,
then this is not [0 : · · · : 0] so it is well-defined.

Thus, for x ∈ Pn \ {p}, it makes sense to define π(x) to be the unique point of
Lpx ∩H. The above calculation shows that π is a rational map Pn 99K H, regular
on Pn \ {p}. We show below that π is not regular at p.

This rational map is called projection from p to H. One could replace this
particular fixed H by any hyperplane not containing p, and carry out the same
recipe.
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Lemma 16.2. Let n ≥ 2. The projection of Pn from p to H is not regular at p.
Proof. Intuitively: there are many lines passing through p and p (not a typo!), so
the projection would have to map p to “everywhere at once.”

We can make this rigorous: Pick a point s ∈ H and consider the line Lps. For
any x ∈ Lps \ {p}, the geometric description of π shows that π(x) = s.

If we assume that π is regular at p, then it restricts to a regular map Lps → H.
We have just shown that this map is constant on Lps \ {p} and therefore it is
constant on Lps. Hence π(p) = s.

We could pick another point t ∈ H and repeat exactly the same argument using
Lpt, so tha π(p) = t. This is a contradiction.

(The condition n ≥ 2 is needed to ensure that H ∼= Pn−1 has two distinct points
s and t. If n = 1, then H is just a point and π is a constant map, so it is regular
everywhere.) �

Products of projective algebraic sets.
Many sets that we want to work with (for example, the graph of a regular map

V → W ) are naturally defined as subsets of products V ×W of algebraic sets.
Therefore we would like to be able to say that the product of algebraic sets are
also algebraic sets.

We saw that this is easy for affine algebraic sets: V ×W is an affine algebraic
subset of Am+n. The key point here is the isomorphism Am × An ∼= Am+n.

For projective algebraic sets, things are harder because Pm × Pn 6∼= Pm+n. To
see informally why P1 × P1 6∼= P2, recall that P1 = A1 ∪ {pt} so
P1×P1 = (A1×A1)∪(A1×{pt})∪({pt}×A1)∪({pt}×{pt}) = A2∪A1∪A1∪{pt}.
Meanwhile

P2 = A2 ∪ P1 = A2 ∪ A1 ∪ {pt}.
Thus P1×P1 contains an extra copy of A1 compared to P2. This is only an informal
argument: a rigorous proof will be on problem sheet 4.

We could try giving an ad hoc definition for Pm × Pn. It is fairly clear what
algebraic subsets of Pm × Pn should mean (sets defined by polynomials in the
two sets of homogeneous coordinates [x0 : · · · : xm], [y0 : · · · : yn]; in order for
the zero set of such a polynomial to be well-defined, it must be bihomogeneous,
that is, homogeneous in the x variables and homogeneous in the y variables, but
potentially of different degrees in x and y degrees can be different). Similarly, we
could give a definition of regular maps between subvarieties of Pm × Pn involving
bihomogeneous polynomials. But it would be annoying to have just defined quasi-
projective varieties, unifying affine and projective varieties, and then immediately
have to introduce ad hoc definitions for another different kind of variety. So we
aim to construct the product in a way which makes it a (quasi-)projective set, and
then we can just reuse the definitions from before.

To construct the product Pm × Pn as a projective algebraic set, we embed it
inside some larger PN . The homogeneous coordinates of a point in Pm × Pn will
be given by an (m+ 1)× (n+ 1) matrix, so we need

N = (m+ 1)(n+ 1)− 1 = mn+m+ n.
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Label the homogeneous coordinates of a point in PN as if they were entries of a
matrix:

[(zij : 0 ≤ i ≤ m, 0 ≤ j ≤ n)],
rather than the usual [z0 : · · · : zN ].

Define a map σm,n : Pm × Pn → PN by sending ([x0 : · · · : xm], [y0 : · · · : yn]) to
the point in PN whose homogeneous coordinates [(zij)] are given by

zij = xiyj

for each pair of indices i, j. Another way to describe this is to say that the
homogeneous coordinates of σm,n([x0 : · · · : xm], [y0 : · · · : yn]) are given by the
product matrix 

x0
...
xm

(y0 · · · yn
)
.

This matrix has rank 1.
Let

Σm,n = {[z00 : · · · : zmn] ∈ PN : the matrix (zij) has rank 1}.
Some linear algebra shows that we can describe Σm,n as the subset of PN where
all 2 × 2 submatrices of the matrix (zij) have zero determinant. Thus Σm,n is a
projective algebraic set, defined by the equations

zijzk` = zkjzi` for 0 ≤ i, k ≤ m, 0 ≤ j, ` ≤ n.

Lemma 16.3. σm,n is a bijection from Pm × Pn to Σm,n.

Proof. (This proof is not part of the course.)
We can define an inverse to σm,n as follows:
Let a ∈ Σm,n, and let A be a matrix giving homogeneous coordinates for a. A

is not the zero matrix (because it is a set of homogeneous coordinates), so we can
pick j such that the j-th column of A contains a non-zero entry. Define π1(a) ∈ Pm
to be the point with homogeneous coordinates given by the j-th column of A, that
is,

π1(a) = [A1j : · · · : Amj].
This is independent of the choice of j because the matrix has rank 1 (every non-zero
column is a multiple of every other non-zero column).

Similarly we can pick i such that the i-th row of A contains a non-zero entry,
and define π2(a) ∈ Pn to be the point with homogeneous coordinates given by the
i-th row of A. Again this is independent of the choice of i.

Now (π1, π2) : Σm,n → Pm × Pn is an inverse to σm,n. �

This construction shows that the projections π1 : Σm,n → Pm and π2 : Σm,n → Pn
are regular maps (each column of the matrix is non-zero on a Zariski open subset
of Σm,n).

The map σm,n : Pm × Pn → PN is called the Segre embedding and its image
Σm,n ⊆ PN is called the Segre variety.
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17. Completeness of projective varieties

Closed subsets of the Segre variety.

Example. When m = n = 1, N = 3. The Segre variety Σm,n ⊆ P3 is defined by
the single equation

det
(
z00 z01
z10 z11

)
= z00z11 − z10z01 = 0.

The Segre embedding is given by
σm,n([x0 : x1], [y0 : y1]) = [x0y0 : x0y1 : x1y0 : x1y1].

We see that Σm,n is an irreducible quadric hypersurface in P3. Therefore by
problem sheet 3, question 4, it is birational to P2. This is not surprising, because
of course P1 × P1 should have an open subset isomorphic to A1 ×A1 ∼= A2, which
in turn is an open subset of P2..

We gave an informal argument last time that P1 × P1 is not be isomorphic to
P2. A rigorous proof for this will be on the next problem sheet.

The Zariski topology on PN induces a subspace topology on Σm,n. One can
check that this topology is the same as what we expect, namely:

Lemma 17.1. Let V ⊆ Pm × Pn. Then σm,n(V ) ⊆ Σm,n is closed if and only if
V = {([x0 : · · · : xm], [y0 : · · · : yn]) : fi(x0, . . . , xm, y0, . . . , yn = 0) for 1 ≤ i ≤ s}
where f1, . . . , fs ∈ k[X0, . . . , Xm, Y0, . . . , Yn] are bihomogeneous polynomials.

Proof. (not part of the course)
Suppose that σm,n(V ) is Zariski closed in PN . Then it is defined by some

homogeneous polynomials gr(z00, . . . , zmn). Making the substitutions zij = xiyj
(as in the definition of σm,n), we get a finite set of polynomials which define V . If gr
is homogeneous in zij of degree dr, then gr◦σm,n is bihomogeneous of degree (dr, dr).

It is easy to see that if V is defined by polynomials fr, where fr is bihomogeneous
of degree (dr, dr), then we can reverse this process to get homogeneous polynomials
in zij which define σm,n(V ).

But what if the defining polynomials for V include some f which is bihomo-
geneous of degree (d, e), where d 6= e? Without loss of generality, suppose that
d > e. Then f = 0 is equivalent to the system of equations

xd−e0 f = 0, . . . , xd−em f = 0
and these equations are bihomogeneous of degree (d, d). �

If V ⊆ Pm and W ⊆ Pn are projective algebraic sets, then V ×W ⊆ Pm× Pn is
Zariski closed: the homogeneous polynomials defining V become bihomogeneous
polynomials of bidegree (d, 0) while those defining W become bihomogeneous
polyomials of bidegree (0, e).

Similarly, if V ⊆ Pm and W ⊆ Pn are quasi-projective algebraic sets, then the
product V ×W is also quasi-projective (it is the intersection of an open subset
and a closed subset in Pm × Pn, and therefore in PN via the Segre embedding).



54

Graphs of regular functions.
Example. One useful example of a subvariety of a product is the graph of a
regular function.

Let V ⊆ Pn and W ⊆ Pm be quasi-projective algebraic sets, and let ϕ : V → W
be a regular map. The graph of ϕ is

Γ = {(x, y) ∈ V ×W : y = ϕ(x)}.
To check that this is closed in V × W , observe that Γ is the preimage of the
diagonal ∆ ⊆ Pm × Pm under the regular map

(ι ◦ ϕ, ι) : V ×W → Pm × Pm

where ι denotes the inclusion map W → Pm. Since (ι ◦ ϕ, ι) is a regular map,
it is continuous. Therefore it suffices to check that the diagonal is a Zariski
closed subset of Pm × Pm. This is true because we can describe the diagonal by
bihomogeneous equations as follows:

∆ = {([x0 : · · · : xm], [y0 : · · · : ym]) : xiyj = xjyi for all i, j}.
Images of projective varieties.

The following is a key property of projective algebraic varieties, which is analo-
gous to “compactness” in for Hausdorff topological spaces.
Theorem 17.2. Let V be a projective variety. Let ϕ : V → W be a regular map
into any quasi-projective variety. Then the image of ϕ is Zariski closed.

Clearly the theorem is false if V is not projective: consider the projection of the
hyperbola {(x, y) : xy = 1} onto one of the axes.

Before proving Theorem 17.6, we shall give some important corollaries.
Corollary 17.3. Every regular function on an irreducible projective variety is
constant.
Proof. Let V be an irreducible projective variety and ϕ : V → A1 a regular function.
Let ι : A1 → P1 be the natural inclusion.

Then ι ◦ ϕ : V → P1 is a regular map, so by Theorem 17.2, its image is a closed
subset of P1. But the image of ι ◦ ϕ is contained in A1, so it cannot be all of P1.
Therefore the image of ϕ is finite.

Since V is irreducible, its image is also irreducible and therefore consists of a
single point. �

Thus projective algebraic sets are essentially “opposite” to affine ones, since an
affine algebraic set is determined by its ring of regular functions while a projective
algebraic set has no regular functions except constants.
Corollary 17.4. The image of a regular map from an irreducible projective variety
to an affine variety is a point.
Proof. Suppose we have a regular map ϕ : V → W , where V is projective and
irreducible and W is affine. We can suppose that W ⊆ Am, and let X1, . . . , Xm

denote the coordinate functions on W . Then X1 ◦ ϕ, . . . , Xm ◦ ϕ are all constant
by Corollary 17.3, and so ϕ is constant. �
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Lemma 17.5. Let V ⊆ Pn be an infinite projective algebraic set and let H ⊆ Pn
be a hyperplane. Then the intersection V ∩H is non-empty.

Proof. Suppose for contradiction that V ∩ H = ∅. Then V ⊆ Pn \ H, which is
isomorphic to An. Hence we get an injective regular map ι : V → An.

By Corollary 17.4, ι is constant on each irreducible component of V . Since ι is
injective, each irreducible component of V is a point.

But V has only finitely many irreducible components, so this contradicts the
hypothesis that V is infinite. �

Definition of completeness.
Theorem 17.2 is equivalent to the following theorem, which will be a more

convenient statement to prove.

Theorem 17.6. Let V be a projective variety. For any quasi-projective varietyW ,
the second projection p2 : V ×W → W maps closed sets to closed sets.

Again, we can see that Theorem 17.6 does not apply when V is not projective
by taking V = W = A1 and taking the hyperbola as a closed subset of V ×W .

Theorem 17.6⇒ Theorem 17.2: Apply Theorem 17.6 to the graph Γ of ϕ : V →
W , using that im(ϕ) = p2(Γ).

Theorem 17.2⇒ Theorem 17.6: Apply Theorem 17.2 it to π2 ◦ ι : Z → W where
ι is the inclusion map Z → V ×W .

Definition. A variety V is complete if it satisfies the conclusion of Theorem 17.6.
In other words, for every quasi-projective varietyW , the second projection p2 : V ×
W → W maps closed sets to closed sets.

For quasi-projective varieties, complete is equivalent to projective, but if we
go beyond the world of quasi-projective varieties (we have not defined non-quasi-
projective varieties at all in this course) then it is possible to find algebraic varieties
which are complete but not projective.

Completeness is the natural analogue in algebraic geometry for compactness in
topology; this is justified by the following result from topology. (In the lecture, I
included the word “Hausdorff” in this lemma, but it is not needed.)

Lemma 17.7. Let S be a topological space. S is compact if and only if, for every
topological space T , the second projection map S × T → T maps closed sets to
closed sets.

We remark that, over the complex numbers, an algebraic variety is complete if
and only if it is compact for the analytic topology (this is hard to prove).
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18. Proof of completeness

Affine open covers.
By definition, every quasi-projective algebraic set is contained in a projective

algebraic set. We can use this to reduce some proofs for quasi-projective algebraic
sets to the projective case (proving from the outside in). On the other hand, it
is often useful to know that we can find affine varieties as open sets inside each
quasi-projective algebraic set. This can be used to reduce some proofs to the affine
case (proving from the inside out).

Lemma 18.1. Let V be a quasi-projective variety. For every point x ∈ V , there
exists an open set U ⊆ V which contains x and is (isomorphic to) an affine variety.

Proof. Write V = V0 ∩ U0 where V0 ⊆ Pn is closed and U0 ⊆ Pn is open.
Given a point x ∈ V , we may assume that x is in An ⊆ Pn (embedded by setting

X0 = 1 – we can achieve this by changing the coordinate system if necessary).
Since Pn \ U0 is a projective algebraic set which does not contain x, there is

some homogeneous polynomial f which vanishes on Pn \ U0 but not at x. Then x
is contained in the set

U = V0 ∩D(f) = V ∩D(f)
where D(f) = {y ∈ An : f(1, y1, . . . , yn) 6= 0}. (We have V0 ∩D(f) = V ∩D(f)
because D(f) ⊆ U0.)
U is an open subset of V because D(f) is an open subset of Pn.
U is a closed subset of D(f), so in order to show that U is an affine variety,

it suffices to show that D(f) is an affine variety. We can prove this using the
“hyperbola trick”: consider the set

E(f) = {(y1, . . . , yn, z) ∈ An+1 : z.f(y1, . . . , yn) = 0}.
E(f) is an affine algebraic set in An+1, and projection onto the first n coordinates
gives an isomorphism between E(f) and D(f). �

Proof of completeness.
We will now prove the completeness of projective varieties, in the form of

Theorem 17.6 (which we recall for convenience).

Theorem 18.2. Let V be a projective variety. For any quasi-projective varietyW ,
the second projection map p2 : V ×W → W maps closed sets to closed sets.

Let Z be a closed subset of V ×W .
By Lemma 18.1, we may cover W by open sets Uα such that each Uα is an

affine variety. According to the topological fact from the proof of Lemma 14.1,
in order to show that p2(Z) is closed in W , it suffices to show that p2(Z) ∩ Uα is
closed in Uα for every α. In other words (replacing W by Uα), it suffices to prove
Theorem 18.2 for the case where W is affine.

Then we can replace V ⊆ Pm by Pm and W ⊆ An by An (Z ⊆ V ×W is closed
in Pm × An). The benefit of doing this is that it simplifies the algebra when we
change everything into coordinates. Thus it suffices to prove the following special
case of Theorem 18.2.
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Theorem 18.3. The second projection map p2 : Pm ×An → An maps closed sets
to closed sets.

Proof. We can describe a Zariski closed subset Z ⊆ Pm × An as the zero set of
some polynomials f1, . . . , fr ∈ k[X0, . . . , Xm, Y1, . . . , Yn] which are homogeneous
with respect to X0, . . . , Xm. (Y1, . . . , Yn are affine coordinages, so there is no
homogeneity condition with respect to them.)

For each point (y1, . . . , yn) ∈ An, we can substitute the values (y1, . . . , yn) into
these polynomials and get a projective algebraic set

Zy = {[x0 : · · · : xm] ∈ Pn : fi(x, y) = 0 for all i}.
Observe that y ∈ p2(Z) if and only if Zy is non-empty.

Let Iy denote the ideal in k[X0, . . . , Xm] generated by the polynomials
f0(X0, . . . , Xm, y), . . . , fr(X0, . . . , Xm, y).

By the Projective Nullstellensatz, Zy is non-empty if and only if rad Iy is not equal
to either the full ring k[X0, . . . , Xm] or to the ideal (X0, . . . , Xm). It is easy to see
that this is equivalent to: Iy does not contain Sd for any positive integer d, where
Sd denotes the set of all homogeneous polynomials of degree d in k[X0, . . . , Xm].

For each positive integer d, write
Wd = {(y1, . . . , yn) ∈ An : Iy 6⊇ Sd}.

We have shown that p2(Z) = ⋂
d∈NWd.

Let the polynomials f0, . . . , fr have degrees d0, . . . , dr with respect to the X
variables. We shall show that Wd is closed for d ≥ max(d0, . . . , dr). Since the Wd

are a descending chain of sets, this is sufficient to show that p2(Z) is closed.
If g ∈ Sd, then g ∈ Iy if and only if we can write

g(X0, . . . , Xm) =
r∑
i=1

fi(X0, . . . , Xm, y)hi(X0, . . . , Xm)

for some homogeneous polynomials h1, . . . , hr, where deg hi = d−di. Hence Sd∩Iy
is the image of the linear map αd,y : ⊕r

i=1 Sd−di → Sd given by

αd,y(h1, . . . , hr) =
r∑
i=1

fi(X0, . . . , Xm, y)hi(X0, . . . , Xm).

Therefore
Wd = {y ∈ An : αd,y is not surjective}

= {y ∈ An : rkαd,y < dimSd}
= {y ∈ An : all (dimSd × dimSd) submatrices of αd,y have determinant 0}

(where we fix bases for Sd and ⊕i Sd−di and use these to write αd,y as a matrix).
The determinants of these submatrices are polynomials in y1, . . . , yn, proving that
Wd is Zariski closed in An. �
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19. Definition of dimension

Dimension and transcendence degree.
We want to define the dimension of algebraic varieties. There are several different

definitions, all equivalent but each being useful in different situations. Note of
these definitions is particularly obvious, so we begin by listing some properties
that the “dimension” of an irreducible quasi-projective variety V ought to have.
(We only consider irreducible varieties here, because a reducible variety might
have components of different dimensions so it is harder to be confident about what
properties the dimension of a reducible variety should have.)

(1) dim V is a nonnegative integer.
(2) dim V = 0 if and only if V is a point (remember that we are assuming that

V is irreducible).
(3) dimAn = dimPn = n.
(4) If U is an open subset of V , then dimU = dim V (note that this holds for

manifolds in differential geometry).
(5) If V and W are birational, then dim V = dimW (this follows from (5)).
We can generalise property (5) to generically finite rational maps, which are

defined as follows.
Definition. Let V and W be irreducible quasi-projective varieties. A dominant
rational map ϕ : V 99K W is generically finite if there is a non-empty open set
U ⊆ W such that ϕ−1(x) is finite for every x ∈ U .

Note: there is more than one possible definition of “generically finite” for non-
dominant rational maps. I shall avoid the issue by only using the words “generically
finite” when the map is dominant.

Now we expect that
(6) If there exists a generically finite dominant rational map ϕ : V 99K W , then

dim V = dimW .
It turns out that these properties are enough to tell us the dimension of every

irreducible quasi-projective variety, thanks to the following lemma.
Lemma 19.1. Let V be an irreducible quasi-projective variety. Then there exists
a generically finite dominant rational map V 99K Pd for some d.
Proof. By Lemma 18.1, V has a non-empty affine open subset U ⊆ V . By
Corollary 11.5 (which we used in the proof of the Nullstellensatz), U is birational
to a hypersurface H in some affine space An. Taking the projective closure H of
H in Pn, we conclude that V is birational to H.

Now projection from any point p ∈ Pn \H gives a generically finite dominant
rational map H 99K Pn−1. �

Using properties (3) and (6), we can calculate dim V by finding a generically
finite dominant rational map V 99K Pd and then saying that dim V = d. There is
one problem with this definition: maybe we can find generically finite dominant
rational maps from V to two different projective spaces, giving two values for
dim V .
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Fortunately this cannot happen, which is proved using the notion of transcen-
dence degree from algebra (note that we already made use of the idea of transcen-
dence degree in the proof of Corollary 11.5, even if we did not prove it).

Definition. Let k and K be fields, with k ⊆ K. The transcendence degree
of K over k is the size of a maximal k-algebraically independent set in K. (By
an algebraic theorem, all maximal k-algebraically independent sets in K have the
same size, so this is well-defined.)

Definition. The dimension of an irreducible quasi-projective variety V is the
transcendence degree (over k) of the field of rational functions k(V ).

This definition satisfies property (3) above: k(Pn) = k(An) = k(X1, . . . , Xn) has
transcendence degree n because {X1, . . . , Xn} is a maximal algebraically indepen-
dent set. It clearly also satisfies property (5). We need to prove that it satisfies
property (7); it will then be easy to deduce the rest of the properties listed above.

Lemma 19.2. Let V and W be irreducible quasi-projective varieties. If ϕ : V 99K
W is a generically finite dominant rational map, then

trdeg(k(V )/k) = trdeg(k(W )/k).

Proof. We can replace V by the open subset domϕ, so that ϕ becomes a regular
map. Using Lemma 18.1, we can replace V and W by affine open subsets, and
then replace V by the graph of ϕ in V ×W . Hence it suffices to assume that
ϕ = p2|V , where p2 is the projection Am+n → An and V is a closed subset of Am+n.

By breaking up ϕ into projections Am+n → Am+n−1 → · · · → A1+n → An, we
may reduce to the case m = 1.

Since ϕ is a dominant rational map, it induces an injection of fields ϕ∗ : k(W )→
k(V ). We have to prove that the resulting field extension k(V )/ϕ∗(k(W )) is
algebraic, and hence that the transcendence degrees are the same.

Look at the coordinate functionX1 on V . Because ϕ is a projection,X2, . . . , X1+n
on V are all in ϕ∗(k(W )) and so the field k(V ) is generated by ϕ∗k(W ) and X1.

Since ϕ is generically finite, V is strictly contained in W ×A1. Hence there is a
non-zero polynomial f ∈ k[W ][Xn+1] which vanishes on V . This gives an k(W )-
algebraic relation satisfied by X1|V in k(V ). Now k(V ) is generated by k(W ) and
X1|V , so k(V ) is algebraic over k(W ) as required. �
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20. Dimension of intersection with a hyperplane

Facts about dimension.
Let V,W be irreducible quasi-projective algebraic varieties.
(1) If ϕ : V → W is a dominant rational map, then dimW ≤ dim V . This

follows from the fact that ϕ∗ is an injection k(W )→ k(V ).
(2) dim(V × W ) = dim V + dimW . This holds because if ϕ : V 99K Ad

and ψ : W 99K Ae are generically finite dominant rational maps, then
(ϕ, ψ) : V ×W 99K Ad+e is a generically finite dominant rational map.

Lemma 20.1. Let V be an irreducible quasi-projective variety and let W be an
irreducible closed subset of V . Then dimW ≤ dim V .

Proof. It suffices to prove the lemma for irreducible V and W . Using Lemma 18.1,
we may assume that V and W are affine algebraic sets in some affine space An.

Let d = dim V . Then any d + 1 of the coordinate functions are algebraically
dependent in k(V ). In other words, there exists a polynomial f ∈ k[T1, . . . , Td+1]
such that f(Xi1|V , . . . , Xid+1|V ) = 0 in k(V ). Since W ⊆ V , this relation still holds
after restricting to W :

f(Xi1|W , . . . , Xid+1|W ) = 0 in k[W ].
But the field of functions k(W ) is generated (as a k-field) by X1|W , . . . , Xn|W , so
this establishes that trdeg(k(W )/k) ≤ d. �

We will later show that equality can only happen in Lemma 20.1 ifW = V . (We
could prove this algebraically now, but instead we will end the algebraic proofs
using transcendence degree here and prove everything else geometrically. This
means that we will need several steps before improving Lemma 20.1 to a strict
inequality.)

Dimension of a reducible variety.
So far we have defined the dimension of an irreducible quasi-projective vari-

ety. The dimension of a reducible variety is defined to be the maximum of the
dimensions of the irreducible components.

To explain why this is a sensible definition (why not minimum for example?),
note that if V = V1 ∪ · · · ∪ Vr are the irreducible components of V , then Vi ⊆ V
so we should have dim Vi ≤ dim V for each i.

Intersection with a hyperplane.
We begin by studying intersections between a projective algebraic set and hyper-

surfaces (for today, just hyperplanes). This is much simpler for projective varieties
than for quasi-projective varieties, because then we know that there can be no
intersections “hiding at infinity.” The expectation is that, if V is an algebraic set
and H is a hypersurface, then dim(V ∩H) should usually be dim V − 1 (because
it is just adding one more equation to the equations defining V ).

Before proving this, we need a couple of lemmas.
Firstly, there is no room between a hypersurface and Pn to squeeze in another

(irreducible) algebraic set.
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Lemma 20.2. Let H ⊆ Pn be a hyperplane (or more generally a hypersurface).
Let V ⊆ Pn be an irreducible projective algebraic set.

If V 6= Pn and V 6= H, then H 6⊆ V .
Proof. Look at ideals of polynomials which vanish on H and V . �

Secondly, we need to know how projection interacts with dimension.
Lemma 20.3. Let V ⊆ Pn be an irreducible projective algebraic set.

Let p ∈ Pn and let Z ⊆ Pn be a hyperplane such that p 6∈ Z. Let π : Pn 99K Z
be the projection from p onto Z.

If p 6∈ V , then π(V ) is a Zariski closed subset of Z and π|V : V → π(V ) is
generically finite, so dim π(V ) = dimV .
Proof. The projection π is regular on Pn \ {p}, and in particular it is regular on V .
Since V is complete, π(V ) is a closed subset of Z.

Now π|V : V → π(V ) is certainly dominant (indeed it is surjective). In order to
show that dim π(V ) = dim V , it suffices to show that π|V is generically finite.

Consider a point y ∈ π(V ). The preimage of y under π|V is the intersection
V ∩ Lpy, where Lpy is the line through p and y. Now V ∩ Lpy is a closed subset of
Lpx. Furthermore V ∩ Lpy 6= Lpy because p 6∈ V . Because Lpy ∼= P1, we conclude
that V ∩ Lpy must be finite. In other words π−1

|V (y) is finite for all y ∈ π(V ), and
so π|V is generically finite. �

Now we are ready to prove the result on the dimension of intersection with
a hyperplane. Note the exceptional cases: if H contains a component of V of
maximum dimension, then dim(V ∩H) = dim V , while if dim V = 0 then V ∩H
might be empty. (If dim V > 0, then V ∩H 6= ∅ by Lemma 17.5.)
Proposition 20.4. Let V ⊆ Pn be a projective algebraic set. Let H ⊆ Pn be a
hyperplane which does not contain any irreducible component of V .

If dim V > 0, then V ∩H is non-empty and dim(V ∩H) = dimV − 1.
Proof. First replace V by an irreducible component V1 such that dim V1 = dim V .
Thus we may assume that V is irreducible.

The proof is by induction on n, the dimension of the ambient space.
The base case of the induction is when V = Pn (remember we are inducting on n,

not dim V ). This is trivial: V ∩H = H ∼= Pn−1 certainly has dimension n− 1.
Otherwise, V 6= Pn. We will project into Pn−1. In order to use Lemma 20.3, we

need to project from a point p 6∈ V . In order for the projection to interact nicely
with H, we need p ∈ H. Fortunately, we can use Lemma 20.2 to show that a
suitable p exists.

We are assuming V 6= Pn while the hypothesis of the proposition tells us that
V 6⊆ H, so V 6= H. Therefore by Lemma 20.2, H 6⊆ V (the opposite way round
to our hypothesis!), so we can select a point p ∈ H such that p 6∈ V .

Choose a hyperplane Z ⊆ Pn such that p 6∈ Z (it doesn’t matter which we
choose). Let π : Pn → Z be the projection from p onto Z.

Because p ∈ H, all lines through p and a point of H lie entirely in H. Therefore
x ∈ H \ {p} ⇔ π(x) ∈ H ∩ Z
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and consequently
π(V ∩H) = π(V ) ∩ (H ∩ Z).

This implies that π(V ) 6⊆ H ∩ Z, because V 6⊆ H.
By completeness, π(V ) is a closed subset of Z ∼= Pn−1, while H ∩ Z is a

hyperplane in Z. Furthermore, π(V ) is irreducible and we have shown that
π(V ) 6⊆ H ∩ Z. Therefore, by induction, we have

dim(π(V ) ∩ (H ∩ Z)) = dim π(V )− 1.
We conclude by using Lemma 20.3, which tells us that

dim π(V ) = dimV and dim π(V ∩H) = dim(π(V ) ∩ (H ∩ Z)). �



63

21. Dimension and equations

Veronese embedding.
In order to generalise Proposition 20.4 from intersections with hyperplanes to

intersections with hypersurfaces, we use the Veronese embedding. This is defined
as follows.

Let d and n be positive integers and let N =
(
n+d
d

)
− 1. There are N + 1 mono-

mials of degree d in variables X0, . . . , Xn (expressions of the form Xa0
0 Xa1

1 · · ·Xan
n

where a0, . . . , an ∈ Z≥0 with a0 + · · · + an = d). We define a regular map
νn,d : Pn → PN by writing down all these monomials of degree d (in some or-
der). For example, for n = d = 2 we get N = 5 and

ν2,2([X0 : X1 : X2]) = [X2
0 : X2

1 : X2
2 : X0X1 : X1X2 : X0X2].

This is called the degree d Veronese embedding of Pn.
By completeness, the image of νn,d is a projective algebraic set Vn,d ⊆ PN .

One can write down explicit polynomials defining this algebraic set (they are
determinants of 2 × 2 matrices). Importantly, νn,d is an isomorphism Pn → Vn,d
(proving this is elementary but the notation gets pretty complicated).

The benefit of doing all this is that, if H ⊆ Pn is a hypersurface defined by some
homogeneous polynomial f = ∑

I aIX
I of degree d, then because the monomials of

degree d become individual homogeneous coordinates via the Veronese embedding,
the equation for νn,d(H) is a linear equation ∑I aIZI = 0. Thus νn,d(H) = Vn,d∩Z
for some hyperplane Z ⊆ PN .

Therefore, instead of studying the intersection between V ⊆ Pn and a hypersur-
face H ⊆ Pn, we can instead study the intersection between νn,d(V ) ⊆ Vn,d ⊆ PN
and a hyperplane Z ⊆ PN . Because νn,d is an isomorphism, we can use Proposi-
tion 20.4 to deduce the same result for intersections with hypersurfaces:

Theorem 21.1. Let V ⊆ Pn be a projective algebraic set. Let H ⊆ Pn be a
hypersurface which does not contain any irreducible component of V .

If dim V > 0, then V ∩H is non-empty and dim(V ∩H) = dimV − 1.

Dimension of proper closed subsets.
I mentioned last time that we can strengthen Lemma 20.1 to a strict inequality,

as long as W 6= V . In this lemma, it is essential that V is irreducible, whereas in
Lemma 20.1, that condition is not necessary.

Lemma 21.2. Let V be an irreducible quasi-projective variety and let W be a
closed subset of V . If W 6= V , then dim V < dimW .

Proof. Suppose that V is a quasi-projective algebraic set in Pn. Let V and W
denote the closures of V and W respectively in Pn. Because W is closed in V and
not equal to V , V 6= W .

So we can pick a homogeneous polynomial f ∈ k[X0, . . . , Xn] which vanishes on
W but not on V . Let H be the hypersurface defined by f . Then W ⊆ V ∩H so
Theorem 21.1 implies that

dimW ≤ dim(V ∩H) = dimV − 1.



64

Since V is open in V , dim V = dim V and similarly dimW = dimW which
completes the proof. �

Dimension and equations.
What is the dimension of a subset of Pn defined by r homogeneous polynomial

equations? We can try to work this out by applying Theorem 21.1 repeatedly.
The zero set of a single homogeneous polynomial f1 is a hypersurface H1, which

we know has dimension n−1. The zero set of two homogeneous polynomials f1, f2
is an intersectionH1∩H2 of two hypersurfaces. If f1 and f2 have no common factor,
then H2 does not contain any irreducible component of H1 and so Theorem 21.1
tells us that dim(H1 ∩H2) = n− 2.

But once we look at three homogeneous polynomials f1, f2, f3, we try to apply
Theorem 21.1 to V = H1 ∩ H2 so we have to ask whether H3 contains any
irreducible component of H1 ∩ H2. There is no easy condition to tell whether
this is true (consider the examples from problem sheets 1 and 2: there were
algebraic sets defined by two polynomials with no common factors; working out
the irreducible components of the intersection was hard work). The best we can
say is dim(H1 ∩H2 ∩H3) = n− 2 or n− 3.

As we repeat the process, controlling the irreducible components only gets
harder. All we can say is that for each extra equation, the dimension goes down
by either 0 or 1. By induction, we get is the following inequality.

Proposition 21.3. Let f1, . . . , fr ∈ k[X0, . . . , Xn] be homogeneous polynomials
and let V ⊆ Pn be the zero set of these polynomials. If r ≤ n, then

V 6= ∅ and dim V ≥ n− r.

Proof. Let Hi be the hypersurface defined by the equation fi = 0. By Theo-
rem 21.1, if Hi does not contain any irreducible component of H1 ∩ · · · ∩ Hi−1,
then

dim(H1 ∩ · · · ∩Hi) = dim(H1 ∩ · · · ∩Hi−1)− 1.
On the other hand, if Hi does contain an irreducible component of H1∩ · · ·∩Hi−1,
then the dimension might not go down at all. In any case,

dim(H1 ∩ · · · ∩Hi) ≥ dim(H1 ∩ · · · ∩Hi−1)− 1.
Iterating this proves the corollary. �

Complete intersections.
In reverse, we can ask: if V ⊆ Pn is a projective algebraic set of dimension n−r,

do there exist r homogeneous polynomials which define V ? Answer: not always.
For example,take the two planes in P4:

P1 = {x ∈ P4 : x1 = x2 = 0}, P2 = {x ∈ P4 : x3 = x4 = 0}.
These intersect in only one point, namely [1 : 0 : 0 : 0 : 0]. The union P1 ∪ P2 has
dimension 2 but it needs 4 equations to define it. (One can also find examples of
irreducible 2-dimensional algebraic sets of P4 which are not set-theoretic complete
intersections, with a singularity which looks like the intersection point of the two
planes in P1 ∪ P2.)



65

There are two relevant definitions. The first one is more in the style of this
course, but the second one turns out to be more natural because it gives more
algebraic information.

Definition. Let V ⊆ Pn be an algebraic set of dimension n− r.
V is a set-theoretic complete intersection if there exist r homogeneous

polynomials such that V is the zero set of these polynomials.
V is a complete intersection if there exist r homogeneous polynomials which

generate the ideal of V .

Being a complete intersection is a stronger property than being a set-theoretic
complete intersection.

For example, a set of three non-collinear points in P2 is a set-theoretic complete
intersection but not a complete intersection: there exist 2 polynomials defining
this set, but you need 3 polynomials to generate its ideal.

We had to go to P4 to give explicit examples of non-set-theoretic complete
intersections. It is an open question whether every irreducible algebraic set in P3

is a set-theoretic complete intersection.

Generalising to quasi-projective varieties.
Theorem 21.1 applies to irreducible quasi-projective algebraic sets V ⊆ Pn as

well as projective algebraic sets, except that for a quasi-projective algebraic set
it can happen that V ∩H = ∅ (Lemma 17.5 applies only to projective algebraic
sets). The precise statement is as follows:

Theorem 21.4. Let V ⊆ Pn be an irreducible quasi-projective algebraic set.
Let H ⊆ Pn be a hypersurface which does not contain V .
If V ∩H 6= ∅, then

dim(V ∩H) = dimV − 1.

This is much harder to prove than Theorem 21.1, so we will omit the proof.
One might attempt to prove Theorem 21.4 by writing V as V ∩ U , where V is
the closure of V in Pn and U is an open set and then applying Theorem 21.1 to
V . The problem with this is that the maximum-dimension components of V ∩H
might be contained in the closed set which is the complement of U , and then
V ∩H would have dimension less than dim(V ∩H) = dim V − 1. Actually this
can’t happen: with harder work we can show that every irreducible component of
V ∩H has dimension equal to dim V − 1. You can do this either geometrically or
using an algebraic result called Krull’s Hauptidealsatz.

Of course the non-emptiness part of Proposition 21.3 does not generalise to
affine sets, but the dimension inequality does provided we assume that the set is
non-empty.
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22. Topological definition of dimension and fibre dimension

Topological definition of dimension.
Our previous definition of dimension was algebraic. We can also describe the

dimension of a variety in terms of its topology.

Theorem 22.1. Let V be a projective variety.
The dimension of V is the maximum integer d such that there exists a chain of

irreducible closed subsets
V ⊇ Vd ) Vd−1 ) · · · ) V0 ) ∅.

Some care is required in the statement of this theorem to get the numbering
right! The point is that dim Vi = i, so V0 is still non-empty. Note that V = Vd if
and only if V is irreducible; all the other inclusions must be strict. In Theorem 22.1,
it is essential to require all the Vi to be irreducible. Otherwise we could make the
chain arbitrarily long by inserting reducible sets with more and more components,
all of dimension i, in between Vi and Vi+1.
Proof. First we prove that such a sequence with d = dimV exists.

Choose Vd to be an irreducible component of V whose dimension is equal to
dim V . Choose H as in Proposition 20.4 applied to Vd. Let Vd−1 be an irreducible
component in Vd ∩H such that

dim Vd−1 = dim(Vd ∩H) = dim V − 1.
We can repeat this procedure, getting Vi ( Vi+1 with dim Vi = i until we get to
V0 with dim V0 = 0.

In the other direction, to show that there is no such sequence with d > dim V ,
this follows immediately from the fact that dim Vi < dim Vi+1 (Lemma 21.2). �

Just like Theorem 21.1, Theorem 22.1 generalises to quasi-projective varieties.
However, Theorem 22.1 is not really strong enough to be useful. For example,

in Pn, we can write down a chain of closed subsets
Pn ) Pn−1 ) Pn−2 ) · · · ) P1 ) {pt} ) ∅.

This chain is maximal – we cannot insert another irreducible closed subset any-
where in the middle of it. But just exhibiting this chain is not enough to prove
that dimPn = n – maybe there is a completely different chain which is longer.

It turns out that that can’t happen: every maximal chain of irreducible closed
subsets in an irreducible quasi-projective variety V has length equal to dim V .
This is another hard theorem, requiring the same work as proving Theorem 21.4
(about the intersection of a quasi-projective algebraic set with a hypersurface).

Fibre dimension theorem.
We have now seen several definitions of dimension. None of these is easy to

compute for specific examples, except in simple cases. When we want to calculate
the dimension of a particular variety, we often use the following powerful theorem.

Theorem 22.2. Let V ,W be irreducible quasi-projective varieties and let ϕ : V →
W be a surjective regular map. Then:
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(i) For every w ∈ W , dimϕ−1(w) ≥ dim V − dimW .
(ii) There exists a non-empty open subset U ⊆ W such that dimϕ−1(w) =

dim V − dimW for all w ∈ U .

(The sets ϕ−1(w) for w ∈ W are called the fibres of ϕ.)
For example, consider the projection from An+m to An: all the fibres are copies

of Am, which has dimension equal to dimAn+m−dimAn. Part (ii) of Theorem 22.2
tells us that most fibres have the “expected” dimension, as in this example, but
there might be a proper closed subset of exceptions. Part (i) of Theorem 22.2 tells
us that for the exceptional fibres, the dimension is always bigger than expected.

It is complicated to write down examples of surjective maps where there is a
non-empty exceptional set using equations. So I shall cheat and give an example
which is not surjective, only dominant (so the theorem does not actually apply to
this example, but it still illustrates the idea that fibre dimension gets bigger over
a closed subset). Consider ϕ : A2 → A2 given by

ϕ(x, y) = (x, xy).

Consider the vertical line Lx = {(x, y) : y ∈ k}. When x 6= 0, ϕ restricts to an
isomorphism Lx → Lx. But when x = 0, ϕ maps all of L0 down to (0, 0). Hence
the image of ϕ is

(
A2 \ {(0, y)}

)
∪ {(0, 0)}.

We see that, above the open set {(x, y) : x 6= 0}, the fibres of ϕ are single points
i.e. with dimension 2− 2 = 0. On the other hand, above the point (0, 0), the fibre
ϕ−1((0, 0)) is a line, so has dimension 1 ≥ 2− 2.

We will not prove Theorem 22.2. The proof uses similar methods to Theo-
rem 21.4, plus an induction.

We generally use this theorem in situations where we know the dimension of
either V or W and want to work out the other. If we can work out dimϕ−1(w)
for just a single w ∈ W , then we get an inequality. If we can work out dimϕ−1(w)
for w in some open set then we can work out the desired dimension exactly.

An importantly special case: if there exists w such that dimϕ−1(w) = 0,
dim V = dimW .

Universal family of hypersurfaces.
The fibre dimension theorem is particularly useful when applied to “families

of algebraic varieties” and “parameter spaces.” These are a powerful feature of
algebraic geometry: often we can consider some collection of algebraic varieties,
and construct another algebraic variety which has one point for each variety in the
collection. We may also be able to fit all the varieties of the collection together
into a single big algebraic variety. This is different form other forms of geometry,
where a “family of objects” rarely forms an object of the same type.

Definition. Let B be a quasi-projective variety. A family of projective alge-
braic sets over B is a Zariski closed subset V ⊆ B × Pn.

For each b ∈ B, we write Vb = {x ∈ Pn : (b, x) ∈ V } and call this a fibre of V .
The set B is called the base or parameter space of the family.
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This definition might seem rather abstract; to give some idea of what is going on,
we will look at a simple example (we will see some more complex examples later).
A hypersurface of degree d in Pn means the zero set of a non-zero homogeneous
polynomial in k[X0, . . . , Xn] of degree d. These polynomials form a vector space
of dimension

(
n+d
d

)
.

If one homogeneous polynomial is a scalar multiple of another, then they define
the same hypersurface. Hence we get a hypersurface Ha associated with each
point a ∈ PN , where N =

(
n+d
d

)
− 1. (The homogeneous coordinates of a form the

coefficients of the polynomial defining Hb.)
These hypersurfaces form a family in PN × Pn – we will finish this example in

the next lecture.
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23. Parameter spaces

Universal family of hypersurfaces.
Let’s recall what we were doing last time: let Vn,d denote the vector space

of homogeneous polynomials in k[X0, . . . , Xn] of degree d. We can count the
dimension of this vector space: dim Vn,d =

(
n+d
d

)
. Let Pn,d denote the projective

space associated with Vn,d i.e.
Pn,d = (Vn,d \ {0})/(scalars) ∼= PN

where N =
(
n+d
d

)
− 1.

For a polynomial f ∈ Vn,d, let’s write [f ] for the corresponding point in Pn,d
Using the basis for Vn,d which consists of the monomials X i0

0 · · ·X in
n (where i0 +

· · ·+ in = d), we see that the homogeneous coordinates of [f ] ∈ Pn,d are given by
the coefficients of f .

Each non-zero polynomial f ∈ Vn,d defines a hypersurface Hf ⊆ Pn. If f is a
scalar multiple of g, then they define the same hypersurface: Hf = Hg. (This is
not quite an if and only if, because things can go wrong with polynomials that do
not generate a radical ideal. Try to come up with an example.)

Thus, instead of labelling hypersurfaces by polynomials f ∈ Vn,d we can label
them instead by points in Pn,d. This has two benefits:

(1) The association of hypersurfaces with points in Pn,d is “almost” injective
(it is injective for polynomials f which generate radical ideals – and these
form a dense open subset of Pn,d).

(2) By using the projective base Pn,d instead of the affine base Vn,d, we can
take advantage of properties like completeness.

We can fit these hypersurfaces together into a family over the base Pn,d. In
other words, there is a single closed set H ⊆ Pn,d × Pn such that the fibre

H[f ] = {x ∈ Pn : ([f ], x) ∈ H}
is the hypersurface defined by the polynomial f . To see that H is closed, we
observe that it is defined by a polynomial equation which is bihomogeneous of
degree (1, d):

H =

([f ], x) ∈ Pn,d × Pn :
∑

0≤i0,...,in≤d
i0+···+in=d

fi0···inX
i0
0 · · ·X in

n = 0

 (*)

where fi0···in denote the coefficients of the polynomial f ∈ Vn,d.
We call H the universal family of hypersurfaces of degree d in Pn. We

think of Pn,d ∼= PN as “the parameter space for hypersurfaces of degree d in Pn.”
Aside. The word “universal” here is related to the fact that every hypersurface

of degree d appears as a fibre in this family, and most of them only appear once
(if we work with schemes instead of varieties, then each hypersurface will really
appear exactly once). However a rigorous definition of what it means for a family
to be “universal” is more subtle than this, and too complicated to define in this
course (it involves the notion of a “flat family of schemes”).
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Subsets of parameter spaces.
One of the benefits of parameter spaces and families of varieties is that they

give us a way of talking about all varieties with some particular property at once.
If we take a family V ⊆ B × Pn and consider the subset of fibres which satisfy an
interesting geometric condition, then very often the corresponding set of points in
the parameter space

{b ∈ B : Vb satisfies given condition}
is an open or closed subset of B.

As a simple example, if we fix a point x ∈ Pn, then the set
{b ∈ B : x ∈ Vb}

is a closed subset. This is the image of the closed set (B × {x}) ∩ V ⊆ B × Pn
under the projection p1 : B × Pn → B, so it is closed because Pn is complete
(Theorem 17.6).

Another example: the set
{[f ] ∈ Pn,d : f is irreducible}

is an open set, and so is the set
{[f ] ∈ Pn,d : f generates a radical ideal}.

– this will be on problem sheet 5.

Dimension counting.
An important use of families of varieties, and the fact that the family is itself

a variety, is that we can calculate the dimension of the parameter space, or of
interesting subsets of it, using the fibre dimension theorem. By doing this, we can
show that certain sets are empty/non-empty/finite/infinite/equal or not equal to
the entire parameter space.

Example. Consider the intersection of n+1 hypersurfaces in Pn. From our earlier
discussions of dimension, we expect that usually such an intersection should be
empty (because n + 1 > n), but of course sometimes it will be non-empty. By
counting dimensions of parameter spaces, we can be more specific about how often
“sometimes non-empty” occurs: we will prove that the subset of the parameter
space where this intersection is non-empty is a closed subset, and then we will
compare its dimension with the dimension of the entire parameter space.

What is the appropriate parameter space? In order to get parameter spaces for
hypersurfaces, we have to fix the degree of the defining polynomial (the dimension
of Pn,d increases as d grows, so if there was a single parameter space for all
hypersurfaces in degree n it would have to be infinite-dimensional, which doesn’t
fit within our notion of varieties).

For simplicity, we will assume that all of the n+1 hypersurfaces we are intersect-
ing have the same degree d. We are looking at sequences of n+ 1 hypersurfaces,
so the parameter space we need is (Pn,d)n+1. (We could more generally pick
a sequence of positive integers d0, . . . , dn and look at intersections of the form
H0 ∩ · · · ∩ Hn where H0 has degree d0, H1 has degree d1, etc. Because we have
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fixed the degree of each Hi, we can still form a parameter space for such sequences:
it would be the product Pn,d0 ×Pn,d1 × · · · ×Pn,dn . The example below would still
work, but would sometimes get a little more complicated.)

The subset of the parameter space which we want to study is

S =
{

(a0, . . . , an) ∈ (Pn,d)n+1 :
n⋂
i=0
Hai 6= ∅

}
.

The algebraic varieties we are interested in (intersections of n+ 1 hypersurfaces)
should form a family over (Pn,d)n+1. More precisely, we want a family of algebraic
varieties over (Pn,d)n+1 such that the fibre above (a0, . . . , an) is ⋂ni=0Hai . We can
define this family by

Σ = {(a0, . . . , an, x) ∈ (Pn,d)n+1 × Pn : x ∈ Hai for all i}.
For each i, the condition x ∈ Hai is given by a polynomial (*), so Σ is a closed
subset of (Pn,d)n+1 × Pn. Thus it is a “family of algebraic varieties” in the sense
we defined in the previous lecture.
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24. Dimension counting example

Continuing from last time: we are interested in the set

S =
{

(a0, . . . , an) ∈ (Pn,d)n+1 :
n⋂
i=0
Hai 6= ∅

}
.

To study this, we will use the family

Σ = {(a0, . . . , an, x) ∈ (Pn,d)n+1 × Pn : x ∈ Hai for all i}.

Σ is a closed subset of (Pn,d)n+1×Pn because each condition x ∈ Hai is given by a
polynomial condition in the homogeneous coordinates of ai ∈ Pn,d (= coefficients
of a polynomial fi such that ai = [fi]) and of x ∈ Pn.

Let π1 denote the projection Σ ⊆ (Pn,d)n+1 × Pn → (Pn,d)n+1. By definition,
π−1

1 (a0, . . . , an) ∩ Σ 6= ∅ if and only (a0, . . . , an) ∈ S. In other words, S = π1(Σ).
Therefore, because Pn is complete, S is a closed subset of (Pn,d)n+1.

(Why are we focussing on the set where ⋂ni=0Hai is non-empty rather than the
set where it is empty? Because closed sets are usually more interesting than open
sets, e.g. it makes sense to ask what is the dimension of a closed subset, while the
dimension of an open set is always the same as the dimension of the space it is
contained in.)

What is dimS?
We can work this out by two applications of the fibre dimension theorem: first

we apply it to the projection Σ → Pn to find dim Σ, then we apply it to the
projection Σ → S to find dimS. The reason we can do this is that we know
the dimension of Pn and we can work out the dimensions of the fibres of both
projections from Σ.

In order to apply the fibre dimension theorem to Σ, we need to know that Σ is
irreducible. This is true, and could be proved using tools from this course, but is
a little more complicated than we want to do now, so we shall take it for granted.

To compute dim Σ, we will apply the fibre dimension theorem to the projection
p : Σ→ Pn. This map is surjective: for any x ∈ Pn, we can pick a ∈ Pn,d such that
x ∈ Ha and then (a, . . . , a, x) ∈ p−1(x) ⊆ Σ. The fibres are

p−1(x) = {(a0, . . . , an) ∈ (Pn,d)n+1 : x ∈ Hai for all i}

=
(
{a ∈ Pn,d : x ∈ Ha}

)n+1
.

Thus
dim p−1(x) = (n+ 1) dim{a ∈ Pn,d : x ∈ Ha}.

In order to calculate dim{a ∈ Pn,d : x ∈ Ha}, make a linear change of coordinates
so that x = [0 : · · · : 0 : 1]. This change of coordinates won’t change the dimension
of {a ∈ Pn,d : x ∈ Ha}, so it suffices to work out the dimension for the special case
of [0 : · · · : 0 : 1].

Now [0 : · · · : 0 : 1] ∈ Ha if and only if the homogeneous polynomial f vanishes
at [0 : · · · : 0 : 1], where a = [f ]. The value of f at [0 : · · · : 0 : 1] is just the Xd

n
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coefficient of f . Thus
[0 : · · · : 0 : 1 ∈ H[f ] ⇔ the Xd

n coefficient of f is zero.
In other words, {a ∈ Pn,d : x ∈ Ha} is a subspace of Pn,d defined by one linear
equation, so dim{a ∈ Pn,d : x ∈ Ha} = dimPn,d− 1 = N − 1 where N =

(
n+d
d

)
− 1.

(Alternatively, we could have seen this without reducing to the case x = [0 : · · · :
0 : 1] by observing that the condition x ∈ H[f ] is a single linear condition on the
coefficients of f , as you see just by expanding out f(x0, . . . , xn) = 0.)

Therefore, for every x ∈ Pn,
dim p−1(x) = (n+ 1)(N − 1).

We can apply the fibre dimension theorem (Theorem 22.2) to get
dim Σ = dimPn + dim p−1(x) = n+ (n+ 1)(N − 1) = N(n+ 1)− 1.

(By part (ii) of the fibre dimension theorem, this holds for all x in some non-empty
open subset of Pn. It doesn’t matter which x we choose because we showed that
all the fibres have the same dimension.)

Now to compute dimS, we will apply the fibre dimension theorem to the pro-
jection q : Σ→ S. This map is surjective by construction. This time, the fibres do
not all have the same dimension, but the minimum dimension of the fibres is zero
– to see that there are fibres of dimension zero, observe that for suitable choices of
n+ 1 homogeneous polynomials of degree d, the intersection of the corresponding
hypersurfaces is finite and non-empty for example: fi = Xd

i for 0 ≤ i ≤ n − 1,
fn = Xd

0 (repeating f0) have the unique common solution [0 : · · · : 0 : 1].
Therefore the fibre dimension theorem implies that

dimS = dim Σ− 0 = N(n+ 1)− 1.
We recall how this follows from the fibre dimension theorem: by part (i), the fact
that there is just a single fibre of dimension 0 implies that 0 ≥ dim Σ− dimS. By
part (ii) of the fibre dimension theorem, there exists an open subset U ⊆ S on
which dim q−1(s) = dim Σ− dimS. But since q−1(s) can never be negative, this
forces 0 ≤ dim q−1(s) = dim Σ− dimS. Combining these gives dimS = dim Σ as
we claimed.

In particular, we have dimS = dim(Pn,d)n+1 − 1. This means that it is only
slightly unusual for n+1 hypersurfaces to have non-empty intersection: this subset
of the parameter space has dimension only 1 less than the entire parameter space.

As an application of this calculation, we see that S is a hypersurface in (P n+1
n,d ),

and therefore it is defined by a single polynomial
F ∈ k[XiJ : 0 ≤ i ≤ n, 0 ≤ I ≤ N ].

In other words, there exists some polynomial F such that, when we evaluate it at
the coefficients of n + 1 homogeneous polynomials f0, . . . , fn of degree d, we get
zero if and only if the intersection ⋂ni=0H[fi] is non-empty.
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