Imperial College London

ProfessorTimothySumner

Faculty of Natural SciencesDepartment of Physics

Professor of Experimental Astrophysics
 
 
 
//

Contact

 

+44 (0)20 7594 7552t.sumner

 
 
//

Location

 

1108Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

413 results found

Akerib DS, Alsum S, Aquino C, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, First searches for axions and axionlike particles with the LUX experiment, Physical Review Letters, Vol: 118, ISSN: 0031-9007

The first searches for axions and axionlike particles with the Large Underground Xenon experiment are presented. Under the assumption of an axioelectric interaction in xenon, the coupling constant between axions and electrons gAe is tested using data collected in 2013 with an exposure totaling 95 live days ×118  kg. A double-sided, profile likelihood ratio statistic test excludes gAe larger than 3.5×10−12 (90% C.L.) for solar axions. Assuming the Dine-Fischler-Srednicki-Zhitnitsky theoretical description, the upper limit in coupling corresponds to an upper limit on axion mass of 0.12  eV/c2, while for the Kim-Shifman-Vainshtein-Zhakharov description masses above 36.6  eV/c2 are excluded. For galactic axionlike particles, values of gAe larger than 4.2×10−13 are excluded for particle masses in the range 1–16  keV/c2. These are the most stringent constraints to date for these interactions.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fallon SR, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Velan V, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Physical Review Letters, Vol: 118, ISSN: 0031-9007

We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5  kg yr exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=1.6×10−41  cm2 (σp=5×10−40  cm2) at 35  GeV c−2, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

Journal article

Armano M, Audley H, Auger G, Baird J, Bassan M, Binetruy P, Born M, Bortoluzzi D, Brandt N, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, de Deus Silva M, De Rosa R, Di Fiore L, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Flatscher R, Freschi M, Marrirodriga CG, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grado A, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lobo A, Lloro I, Liu L, Lopez-Zaragoza JP, Maarschalkerweerd R, Mance D, Martin V, Martin-Polo L, Martino J, Martin-Porqueras F, Madden S, Mateos I, McNamara PW, Mendes J, Mendel L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Shaul D, Slutsky J, Sopuerta CF, Stanga R, Sumner T, Texier D, Thorpe JI, Trenke C, Troebs M, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P, Wealthy D, Weber WJ, Wissel L, Wittchen A, Zambotti A, Zanoni C, Ziegler T, Zweifel Pet al., 2017, LISA Pathfinder closed-loop analysis: a model breakdown of the in-loop observables, 11th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

This paper describes a methodology to analyze, in the frequency domain, the steady-state control performances of the LISA Pathfinder mission. In particular, it provides a technical framework to give a comprehensive understanding of the spectra of all the degrees of freedom by breaking them down into their various physical origins, hence bringing out the major contributions of the control residuals. A reconstruction of the measured in-loop output, extracted from a model of the closed-loop system, is shown as an instance to illustrate the potential of such a model breakdown of the data.

Conference paper

Armano M, Audley H, Auger G, Baird J, Bassan M, Binetruy P, Born M, Bortoluzzi D, Brandt N, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, de Deus Silva M, De Rosa R, Di Fiore L, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Flatscher R, Freschi M, Marrirodriga CG, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grado A, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lobo A, Lloro I, Liu L, Lopez-Zaragoza JP, Maarschalkerweerd R, Mance D, Martin V, Martin-Polo L, Martino J, Martin-Porqueras F, Madden S, Mateos I, McNamara PW, Mendes J, Mendes L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Shaul D, Slutsky J, Sopuerta CF, Stanga R, Sumner T, Texier D, Thorpe JI, Trenkel C, Troebs M, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P, Wealthy D, Weber WJ, Wissel L, Wittchen A, Zambotti A, Zanoni C, Ziegler T, Zweifel Pet al., 2017, LISA Pathfinder: First steps to observing gravitational waves from space, 11th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

LISA Pathfinder, the European Space Agency's technology demonstrator mission for future spaceborne gravitational wave observatories, was launched on 3 December 2015, from the European space port of Kourou, French Guiana. After a short duration transfer to the final science orbit, the mission has been gathering science data since. This data has allowed the science community to validate the critical technologies and measurement principle for low frequency gravitational wave detection and thereby confirming the readiness to start the next generation gravitational wave observatories, such as LISA.This paper will briefly describe the mission, followed by a description of the science operations highlighting the performance achieved.Details of the various experiments performed during the nominal science operations phase can be found in accompanying papers in this volume.

Conference paper

Armano M, Audley H, Auger G, Baird JT, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, de Deus Silva M, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons ED, Flatscher R, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Killow CJ, Korsakova N, Lloro I, Liu L, Lopez-Zaragoza JP, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta C, Sumner TJ, Texier D, Thorpe JI, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Wass PJ, Wealthy D, Weber WJ, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2017, Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder, Physical Review Letters, Vol: 118, ISSN: 0031-9007

We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational reference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0  fm s−2 Hz−1/2 across the 0.1–100 mHz frequency band that is crucial to an observatory such as the Laser Interferometer Space Antenna (LISA). Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge buildup due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bramante R, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Signal yields, energy resolution, and recombination fluctuations in liquid xenon, Physical Review D, Vol: 95, ISSN: 2470-0010

This work presents an analysis of monoenergetic electronic recoil peaks in the dark-matter-search and calibration data from the first underground science run of the Large Underground Xenon (LUX) detector. Liquid xenon charge and light yields for electronic recoil energies between 5.2 and 661.7 keV are measured, as well as the energy resolution for the LUX detector at those same energies. Additionally, there is an interpretation of existing measurements and descriptions of electron-ion recombination fluctuations in liquid xenon as limiting cases of a more general liquid xenon recombination fluctuation model. Measurements of the standard deviation of these fluctuations at monoenergetic electronic recoil peaks exhibit a linear dependence on the number of ions for energy deposits up to 661.7 keV, consistent with previous LUX measurements between 2 and 16 keV with 3H. We highlight similarities in liquid xenon recombination for electronic and nuclear recoils with a comparison of recombination fluctuations measured with low-energy calibration data.

Journal article

Akerib DS, Alsum S, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bramante R, Bras P, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kamdin K, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Palladino KJ, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solmaz M, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor WC, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Xu J, Yazdani K, Young SK, Zhang Cet al., 2017, Results from a search for dark matter in the complete LUX exposure, Physical Review Letters, Vol: 118, ISSN: 1079-7114

We report constraints on spin-independent weakly interacting massive particle (WIMP)-nucleon scattering using a 3.35×104  kg day exposure of the Large Underground Xenon (LUX) experiment. A dual-phase xenon time projection chamber with 250 kg of active mass is operated at the Sanford Underground Research Facility under Lead, South Dakota (USA). With roughly fourfold improvement in sensitivity for high WIMP masses relative to our previous results, this search yields no evidence of WIMP nuclear recoils. At a WIMP mass of 50  GeV c−2, WIMP-nucleon spin-independent cross sections above 2.2×10−46  cm2 are excluded at the 90% confidence level. When combined with the previously reported LUX exposure, this exclusion strengthens to 1.1×10−46  cm2 at 50  GeV c−2.

Journal article

Armano M, Audley H, Baird J, Binetruy P, Born M, Bortoluzzi D, Castelli E, Cavalleri A, Cesarini A, Cruise AM, Danzmann K, De Deus Silva M, Diepholz I, Dixon G, Dolesi R, Ferraioli L, Ferroni V, Fitzsimons ED, Freschi M, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Meshskar N, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Ramos-Castro J, Reiche J, Robertson DI, Rivas F, Russano G, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe JI, Vetrugno D, Vitale S, Wanner G, Ward H, Wass P, Weber WJ, Wissel L, Wittchen A, Zweifel Pet al., 2017, Lisa Pathfinder

© 2017 28th International Symposium on Lepton Photon Interactions at High Energies, LP 2017. All rights reserved. Since the 2017 Nobel Prize in Physics was awarded for the observation of gravitational waves, it is fair to say that the epoch of gravitational wave astronomy (GWs) has begun. However, a number of interesting sources of GWs can only be observed from space. To demonstrate the feasibility of the Laser Interferometer Space Antenna (LISA), a future gravitational wave observatory in space, the LISA Pathfinder satellite was launched on December, 3rd 2015. Measurements of the spurious forces accelerating an otherwise free-falling test mass, and detailed investigations of the individual subsystems needed to achieve the free-fall, have been conducted throughout the mission. This overview article starts with the purpose and aim of the mission, explains satellite hardware and mission operations and ends with a summary of selected important results and an outlook towards LISA. From the LISA Pathfinder experience, we can conclude that the proposed LISA mission is feasible.

Conference paper

Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, de Deus Silva M, Desiderio D, Piersanti E, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Flatscher R, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Grimani C, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Liu L, Lopez-Zaragoza JP, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Polo L, Martino J, Martin-Porqueras F, Mateos I, McNamara PW, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Rivas F, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe JI, Tomlinson R, Trenkel C, Vetrugno D, Vitale S, Wanner G, Ward H, Warren C, Wass PJ, Wealthy D, Weber WJ, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2016, Constraints on LISA Pathfinder's self-gravity: design requirements, estimates and testing procedures, Classical and Quantum Gravity, Vol: 33, ISSN: 0264-9381

LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun–Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below $3\times {10}^{-14}\,{\rm{m}}\,{{\rm{s}}}^{-2}\,{\mathrm{Hz}}^{-1/2}$ within the 1–30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s−2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

Journal article

Armano M, Audley H, Auger G, Baird JT, Bassan M, Binetruy P, Born M, Bortoluzzi D, Brandt N, Caleno M, Carbone L, Cavalleri A, Cesarini A, Ciani G, Congedo G, Cruise AM, Danzmann K, de Deus Silva M, De Rosa R, Diaz-Aguiló M, Di Fiore L, Diepholz I, Dixon G, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fichter W, Fitzsimons ED, Flatscher R, Freschi M, García Marín AF, García Marirrodriga C, Gerndt R, Gesa L, Gibert F, Giardini D, Giusteri R, Guzmán F, Grado A, Grimani C, Grynagier A, Grzymisch J, Harrison I, Heinzel G, Hewitson M, Hollington D, Hoyland D, Hueller M, Inchauspé H, Jennrich O, Jetzer P, Johann U, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow CJ, Lobo JA, Lloro I, Liu L, López-Zaragoza JP, Maarschalkerweerd R, Mance D, Martín V, Martin-Polo L, Martino J, Martin-Porqueras F, Madden S, Mateos I, McNamara PW, Mendes J, Mendes L, Monsky A, Nicolodi D, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Raïs B, Ramos-Castro J, Reiche J, Robertson DI, Rozemeijer H, Rivas F, Russano G, Sanjuán J, Sarra P, Schleicher A, Shaul D, Slutsky J, Sopuerta CF, Stanga R, Steier F, Sumner T, Texier D, Thorpe JI, Trenkel C, Tröbs M, Tu HB, Vetrugno D, Vitale S, Wand V, Wanner G, Ward H, Warren C, Wass PJ, Wealthy D, Weber WJ, Wissel L, Wittchen A, Zambotti A, Zanoni C, Ziegler T, Zweifel Pet al., 2016, Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results, Physical Review Letters, Vol: 116, ISSN: 1079-7114

We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1  fm s−2/Hz−−−√, or (0.54±0.01)×10−15  g/Hz−−−√, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3)  fm/Hz−−−√, about 2 orders of magnitude better than requirements. At f≤0.5  mHz we observe a low-frequency tail that stays below 12  fm s−2/Hz−−−√ down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.

Journal article

Carmona-Benitez MC, Akerib DS, Araújo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard E, Bernstein A, Bradley A, Byram D, Cahn SB, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, deViveiros L, Dobi A, Dobson J, Druszkiewicz E, Edwards B, Faha CH, Fiorucci S, Flores C, Gaitskel RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall C, Hanhardt M, Haselschwardt S, Hertel SA, Horng M, Huang DQ, Ihm M, Jacobsen RG, Kazkaz K, Knoche R, Larsen NA, Lee C, Lenardo B, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay A, Mannino R, McKinsey DN, Mei DM, Mock J, Moongweluwan M, Morad J, Murphy ASJ, Nehrkorn C, Nelson H, Neves F, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichhart L, Shutt T, Silva C, Solovov VN, Sorensen P, O'Sullivan K, Sumner TJ, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Walsh N, Webb R, Whiter JT, Witherell MS, Wolfs FLH, Woods M, Zhang Cet al., 2016, First Results of the LUX Dark Matter Experiment, Nuclear and Particle Physics Proceedings, Vol: 273-275, Pages: 309-313, ISSN: 2405-6014

LUX (Large Underground Xenon) is a dark matter direct detection experiment deployed at the 4850' level of the Sanford Underground Research Facility (SURF) in Lead, SD, operating a 370 kg dual-phase xenon TPC. Results of the first WIMP search run were presented in late 2013, for the analysis of 85.3 live-days with a fiducial volume of 118 kg, taken during the period of April to August 2013. The experiment exhibited a sensitivity to spin-independent WIMP-nucleon elastic scattering with a minimum upper limit on the cross section of 7.6×10-46cm2 at a WIMP mass of 33 GeV/c2, becoming the world's leading WIMP search result, in conflict with several previous claimed hints of discovery.

Journal article

Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, de Viveiros L, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Ott RA, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor W, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Yazdani K, Young SK, Zhang Cet al., 2016, Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data, Physical Review Letters, Vol: 116, ISSN: 1079-7114

We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including 1.4×104  kg day of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium β source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4  GeV c−2, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33  GeV c−2 WIMP mass.

Journal article

Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, de Viveiros L, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay A, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Ott RA, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor W, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Yazdani K, Young SK, Zhang Cet al., 2016, Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment, Physical Review Letters, Vol: 116, ISSN: 1079-7114

We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×104  kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4×10−41  cm2 (σp=2.9×10−39  cm2) at 33  GeV/c2. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

Journal article

Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, de Viveiros L, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Hertel SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kazkaz K, Khaitan D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Malling DC, Manalaysay AG, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves F, O'Sullivan K, Oliver-Mallory KC, Ott RA, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Solovov VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor W, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tvrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Young SK, Zhang Cet al., 2016, Tritium calibration of the LUX dark matter experiment, Physical Review D, Vol: 93, ISSN: 1550-7998

We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170 000 highly pure and spatially uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 and 105  V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a reanalysis of the LUX run 3 weakly interacting massive particle search.

Journal article

Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Beltrame P, Bernard EP, Bernstein A, Biesiadzinski TP, Boulton EM, Bradley A, Bramante R, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, Cutter JE, Davison TJR, de Viveiros L, Dobi A, Dobson JEY, Druszkiewicz E, Edwards BN, Faham CH, Fiorucci S, Gaitskell RJ, Gehmang VM, Ghag C, Gibson KR, Gilchriese MGD, Hall CR, Hanhardt M, Haselschwardt SJ, Herter SA, Hogan DP, Horn M, Huang DQ, Ignarra CM, Ihm M, Jacobsen RG, Ji W, Kazkaz K, Khaitang D, Knoche R, Larsen NA, Lee C, Lenardo BG, Lesko KT, Lindote A, Lopes MI, Mailing DC, Manalaysay AG, Mannino RL, Marzioni MF, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad JA, Murphy ASJ, Nehrkorn C, Nelson HN, Neves E, O'Sullivan K, Oliver-Mallory KC, Ott RA, Palladino KJ, Pangilinan M, Pease EK, Phelps P, Reichhart L, Rhyne C, Shaw S, Shutt TA, Silva C, Skulski W, Solovovn VN, Sorensen P, Stephenson S, Sumner TJ, Szydagis M, Taylor DJ, Taylor W, Tennyson BP, Terman PA, Tiedt DR, To WH, Tripathi M, Tyrznikova L, Uvarov S, Verbus JR, Webb RC, White JT, Whitis TJ, Witherell MS, Wolfs FLH, Yin J, Young SK, Zhang Cet al., 2016, FPGA-based trigger system for the LUX dark matter experiment, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, Vol: 818, Pages: 57-67, ISSN: 1872-9576

LUX is a two-phase (liquid/gas) xenon time projection chamber designed to detect nuclear recoils resulting from interactions with dark matter particles. Signals from the detector are processed with an FPGA-based digital trigger system that analyzes the incoming data in real-time, with just a few microsecond latency. The system enables first pass selection of events of interest based on their pulse shape characteristics and 3D localization of the interactions. It has been shown to be >99% efficient in triggering on S2 signals induced by only few extracted liquid electrons. It is continuously and reliably operating since its full underground deployment in early 2013. This document is an overview of the systems capabilities, its inner workings, and its performance.

Journal article

Hollington D, Baird JT, Sumner TJ, Wass PJet al., 2015, Characterising and testing deep UV LEDs for use in space applications, Classical and Quantum Gravity, Vol: 32, ISSN: 1361-6382

Deep ultraviolet (DUV) light sources are used to neutralise isolated test masses in highly sensitive space-based gravitational experiments. An example is the LISA Pathfinder charge management system, which uses low-pressure mercury lamps. A future gravitational-wave observatory such as eLISA will use UV light-emitting diodes (UV LEDs), which offer numerous advantages over traditional discharge lamps. Such devices have limited space heritage but are now available from a number of commercial suppliers. Here we report on a test campaign that was carried out to quantify the general properties of three types of commercially available UV LEDs and demonstrate their suitability for use in space. Testing included general electrical and UV output power measurements, spectral stability, pulsed performance and temperature dependence, as well as thermal vacuum, radiation and vibration survivability.

Journal article

Abdallah J, Araujo H, Arbey A, Ashkenazi A, Belyaev A, Berger J, Boehm C, Boveia A, Brennan A, Brooke J, Buchmueller O, Buckley M, Busoni G, Calibbi L, Chauhan S, Daci N, Davies G, De Bruyn I, De Jong P, De Roeck A, de Vries K, Del Re D, De Simone A, Di Simone A, Doglioni C, Dolan M, Dreiner HK, Ellis J, Eno S, Etzion E, Fairbairn M, Feldstein B, Flaecher H, Feng E, Fox P, Genest M-H, Gouskos L, Gramling J, Haisch U, Harnik R, Hibbs A, Hoh S, Hopkins W, Ippolito V, Jacques T, Kahlhoefer F, Khoze VV, Kirk R, Korn A, Kotov K, Kunori S, Landsberg G, Liem S, Lin T, Lowette S, Lucas R, Malgeri L, Malik S, McCabe C, Mete AS, Morgante E, Mrenna S, Nakahama Y, Newbold D, Nordstrom K, Pani P, Papucci M, Pataraia S, Penning B, Pinna D, Polesello G, Racco D, Re E, Riotto AW, Rizzo T, Salek D, Sarkar S, Schramm S, Skubic P, Slone O, Smirnov J, Soreq Y, Sumner T, Tait TMP, Thomas M, Tomalin I, Tunnell C, Vichi A, Volansky T, Weiner N, West SM, Wielers M, Worm S, Yavin I, Zaldivar B, Zhou N, Zurek Ket al., 2015, Simplified models for dark matter searches at the LHC, Physics of the Dark Universe, Vol: 9-10, Pages: 8-23, ISSN: 2212-6864

This document a outlines a set of simplified models for dark matter and its interactions with Standard Model particles. It is intended to summarize the main characteristics that these simplified models have when applied to dark matter searches at the LHC, and to provide a number of useful expressions for reference. The list of models includes both s-channel and t-channel scenarios. For s-channel, spin-0 and spin-1 mediations are discussed, and also realizations where the Higgs particle provides a portal between the dark and visible sectors. The guiding principles underpinning the proposed simplified models are spelled out, and some suggestions for implementation are presented.

Journal article

Malik SA, McCabe C, Araujo H, Belyaev A, Boehm C, Brooke J, Buchmueller O, Davies G, De Roeck A, de Vries K, Dolan MJ, Ellis J, Fairbairn M, Flaecher H, Gouskosk L, Khoze VV, Landsberg G, Newbold D, Papucci M, Sumner T, Thomas M, Worm Set al., 2015, Interplay and characterization of Dark Matter searches at colliders and in direct detection experiments, Physics of the Dark Universe, Vol: 9-10, Pages: 51-58, ISSN: 2212-6864

In this White Paper we present and discuss a concrete proposal for the consistent interpretation of Dark Matter searches at colliders and in direct detection experiments. Based on a specific implementation of simplified models of vector and axial-vector mediator exchanges, this proposal demonstrates how the two search strategies can be compared on an equal footing.

Journal article

Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Bernard E, Bernstein A, Bradley A, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Coffey T, Currie A, de Viveiros L, Dobi A, Dobson J, Druszkiewicz E, Edwards B, Faham CH, Fiorucci S, Flores C, Gaitskell RJ, Gehman VM, Ghagi C, Gibson KR, Gilchriese MGD, Hall C, Hertel SA, Horn M, Huang DQ, Ihm M, Jacobsen RG, Kazkaz K, Knoche R, Larsen NA, Lee C, Lindote A, Lopes MI, Malling DC, Mannino R, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad J, Murphy AS, Nehrkorn C, Nelson H, Neves F, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichharti L, Shutt T, Silva C, Solovov VN, Sorensen P, O'Sullivan K, Sumner TJ, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Uvarov S, Verbus JR, Walsh N, Webb R, White JT, Witherell MS, Wolfs FLH, Woods M, Zhang Cet al., 2015, Radiogenic and muon-induced backgrounds in the LUX dark matter detector, ASTROPARTICLE PHYSICS, Vol: 62, Pages: 33-46, ISSN: 0927-6505

Journal article

Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Cutler C, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Maghami P, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vetrugno D, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, Free-flight experiments in LISA Pathfinder, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Bradley A, Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Bernard E, Bernstein A, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Coffey T, Currie A, de Viveiros L, Dobi A, Dobson J, Druszkiewicz E, Edwards B, Faham CH, Fiorucci S, Flores C, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall C, Hertel SA, Horn M, Huang DQ, Ihm M, Jacobsen RG, Kazkaz K, Knoche R, Larsen NA, Lee C, Lindote A, Lopes MI, Malling DC, Mannino R, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad J, Murphy ASJ, Nehrkorn C, Nelson H, Neves F, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichhart L, Shutt T, Silva C, Solovov VN, Sorensen P, O'Sullivan K, Sumner TJ, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Uvarov S, Verbus JR, Walsh N, Webb R, White JT, Witherell MS, Wolfs FLH, Woods M, Zhang Cet al., 2015, Radon-Related Backgrounds in the LUX Dark Matter Search, 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), Publisher: ELSEVIER SCIENCE BV, Pages: 658-665, ISSN: 1875-3892

Conference paper

Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, Disentangling the magnetic force noise contribution in LISA Pathfinder, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Bernard E, Bernstein A, Bradley A, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Coffey T, Currie A, de Viveiros L, Dobi A, Dobson J, Druszkiewicz E, Edwards B, Faham CH, Fiorucci S, Flores C, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall C, Hertel SA, Horn M, Huang DQ, Ihm M, Jacobsen RG, Kazkaz K, Knoche R, Larsen NA, Lee C, Lindote A, Lopes MI, Malling DC, Mannino R, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad J, Murphy ASJ, Nehrkorn C, Nelson H, Neves F, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichhart L, Shutt T, Silva C, Solovov VN, Sorensen P, O'Sullivan K, Sumner TJ, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Uvarov S, Verbus JR, Walsh N, Webb R, White JT, Witherell MS, Wolfs FLH, Woods M, Zhang Cet al., 2015, The LUX Experiment, 13th International Conference on Topics in Astroparticle and Underground Physics (TAUP), Publisher: ELSEVIER SCIENCE BV, Pages: 74-76, ISSN: 1875-3892

Conference paper

Gibert F, Nofrarias M, Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa LI, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Maghami P, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vetrugno D, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, In-flight thermal experiments for LISA Pathfinder: Simulating temperature noise at the Inertial Sensors, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vetrugno D, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, A noise simulator for eLISA: Migrating LISA Pathfinder knowledge to the eLISA mission, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Armano M, Audley H, Auger G, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Marirrodriga CG, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mitchell E, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, Bayesian statistics for the calibration of the LISA Pathfinder experiment, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vetrugno D, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, The LISA Pathfinder Mission, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Armano M, Audley H, Auger G, Baird J, Binetruy P, Born M, Bortoluzzi D, Brandt N, Bursi A, Caleno M, Cavalleri A, Cesarini A, Cruise M, Danzmann K, Diepholz I, Dolesi R, Dunbar N, Ferraioli L, Ferroni V, Fitzsimons E, Freschi M, Gallegos J, Marirrodriga CG, Gerndt R, Gesa LI, Gibert F, Giardini D, Giusteri R, Grimani C, Harrison I, Heinzel G, Hewitson M, Hollington D, Hueller M, Huesler J, Inchauspe H, Jennrich O, Jetzer P, Johlander B, Karnesis N, Kaune B, Korsakova N, Killow C, Lloro I, Maarschalkerweerd R, Madden S, Mance D, Martin V, Martin-Porqueras F, Mateos I, McNamara P, Mendes J, Mendes L, Moroni A, Nofrarias M, Paczkowski S, Perreur-Lloyd M, Petiteau A, Pivato P, Plagnol E, Prat P, Ragnit U, Ramos-Castro J, Reiche J, Perez JAR, Robertson D, Rozemeijer H, Russano G, Sarra P, Schleicher A, Slutsky J, Sopuerta CF, Sumner T, Texier D, Thorpe J, Trenkel C, Tu HB, Vitale S, Wanner G, Ward H, Waschke S, Wass P, Wealthy D, Wen S, Weber W, Wittchen A, Zanoni C, Ziegler T, Zweifel Pet al., 2015, A Strategy to Characterize the LISA-Pathfinder Cold Gas Thruster System, 10th International LISA Symposium, Publisher: IOP PUBLISHING LTD, ISSN: 1742-6588

Conference paper

Sesana A, Weber WJ, Killow CJ, Perreur-Lloyd M, Robertson DI, Ward H, Fitzsimons ED, Bryant J, Cruise AM, Dixon G, Hoyland D, Smith D, Bogenstahl J, McNamara PW, Gerndt R, Flatscher R, Hechenblaikner G, Hewitson M, Gerberding O, Barke S, Brause N, Bykov I, Danzmann K, Enggaard A, Gianolio A, Hansen TV, Heinzel G, Hornstrup A, Jennrich O, Kullmann J, Moller-Pedersen S, Rasmussen T, Reiche J, Sodnik Z, Suess M, Armano M, Sumner T, Bender PL, Akutsu T, Sathyaprakash BSet al., 2014, Space-based detectors, GENERAL RELATIVITY AND GRAVITATION, Vol: 46, ISSN: 0001-7701

Journal article

Horn M, Akerib DS, Araujo HM, Bai X, Bailey AJ, Balajthy J, Bernard E, Bernstein A, Bradley A, Byram D, Cahn SB, Carmona-Benitez MC, Chan C, Chapman JJ, Chiller AA, Chiller C, Currie A, de Viveiros L, Dobi A, Dobson J, Druszkiewicz E, Edwards B, Faham CH, Fiorucci S, Flores C, Gaitskell RJ, Gehman VM, Ghag C, Gibson KR, Gilchriese MGD, Hall C, Hanhardt M, Haselschwardt S, Hertel SA, Huang DQ, Ihm M, Jacobsen RG, Kazkaz K, Knoche R, Larsen NA, Lee C, Lenardo B, Lesko KT, Lindote A, Lopes MI, Malling DC, Mannino R, McKinsey DN, Mei D-M, Mock J, Moongweluwan M, Morad J, Murphy ASJ, Nehrkorn C, Nelson H, Neves F, Ott RA, Pangilinan M, Parker PD, Pease EK, Pech K, Phelps P, Reichhart L, Shutt T, Silva C, Solovov VN, Sorensen P, O'Sullivan K, Sumner TJ, Szydagis M, Taylor D, Tennyson B, Tiedt DR, Tripathi M, Uvarov S, Verbus JR, Walsh N, Webb R, White JT, Witherell MS, Wolfs FLH, Woods M, Zhang Cet al., 2014, Results from the LUX dark matter experiment, 15th Symposium on Radiation Measurements and Applications 2014 (SORMA XV), Publisher: Elsevier, Pages: 504-507, ISSN: 0168-9002

The LUX (Large Underground Xenon) experiment aims at the direct detection of dark matter particles via their collisions with xenon nuclei. The 370 kg two-phase liquid xenon time projection chamber measures simultaneously the scintillation and ionization from interactions in the target. The ratio of these two signals provides very good discrimination between potential nuclear recoil and electronic recoil signals to search for WIMP-nucleon scattering. The LUX detector operates at the Sanford Underground Research Facility (Lead, South Dakota, USA) since February 2013. First results were presented in late 2013 setting the world׳s most stringent limits on WIMP-nucleon scattering cross-sections over a wide range of WIMP masses. A 300 day run beginning in 2014 will further improve the sensitivity and new calibration techniques will reduce systematics for the WIMP signal search.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00005751&limit=30&person=true&page=2&respub-action=search.html