Imperial College London

Dr Taiyu Zhu

Faculty of EngineeringDepartment of Electrical and Electronic Engineering

Visiting Researcher
 
 
 
//

Contact

 

taiyu.zhu17

 
 
//

Location

 

Electrical EngineeringSouth Kensington Campus

//

Summary

 

Summary

Taiyu Zhu is a Research Fellow at University of Oxford. He has completed his PhD at the Centre for Bio-Inspired Technology, Department of Electrical and Electronic Engineering, Imperial College London in 2022, where he currently holds a Visiting Researcher position. He was supported by Imperial College President's PhD Scholarship.

He has graduated with a First-Class Honours BEng degree from the Australian National University in 2017 and a Distinction MSc degree in Electrical and Electronic Engineering from Imperial College London in 2018. He received the Outstanding Achievement Award for his achievements in the MSc courses. He was awarded the Stylianos Kalaitzis PhD Award, the most promising doctoral work, in 2022.

His research focuses on artificial intelligence (AI) in healthcare. He has been working on developing novel machine learning and deep learning algorithms to meet the challenges in diabetes management. His research aims to deliver frontier biomedical engineering applications and AI-powered tools to improve the health and well-being for people with chronic diseases and solve real-world healthcare problems.

Publications

Journals

Zhu T, Li K, Herrero P, et al., 2023, GluGAN: Generating Personalized Glucose Time Series Using Generative Adversarial Networks., Ieee J Biomed Health Inform, Vol:PP

Noaro G, Zhu T, Cappon G, et al., 2023, A Personalized and Adaptive Insulin Bolus Calculator Based on Double Deep Q- Learning to Improve Type 1 Diabetes Management., Ieee J Biomed Health Inform, Vol:27, Pages:2536-2544

Zhu T, Kuang L, Daniels J, et al., 2023, IoMT-Enabled Real-Time Blood Glucose Prediction With Deep Learning and Edge Computing, Ieee Internet of Things Journal, Vol:10, ISSN:2327-4662, Pages:3706-3719

Zhu T, Li K, Herrero P, et al., 2023, Personalized blood glucose prediction for Type 1 diabetes using evidential deep learning and meta-learning., Ieee Transactions on Biomedical Engineering, Vol:70, ISSN:0018-9294, Pages:193-204

Zhu T, Uduku C, Li K, et al., 2022, Enhancing self-management in type 1 diabetes with wearables and deep learning, Npj Digital Medicine, Vol:5, ISSN:2398-6352

More Publications