Imperial College London

MrTanujKaria

Faculty of EngineeringDepartment of Chemical Engineering

Research Postgraduate
 
 
 
//

Contact

 

tanuj.karia17 Website

 
 
//

Location

 

C611Roderic Hill BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

3 results found

Karia T, Adjiman C, Chachuat B, 2022, Assessment of a two-step approach for global optimization of mixed-integer polynomial programs using quadratic reformulation, Computers and Chemical Engineering, Vol: 165, ISSN: 0098-1354

This paper revisits the approach of transforming a mixed-integer polynomial program (MIPOP) into a mixed-integer quadratically-constrained program (MIQCP), in the light of recent progress in global solvers for this latter class of models. We automate this transformation in a new reformulation engine called CANON, alongside preprocessing strategies including local search and bounds tightening. We conduct comparative tests on a collection of 137 MIPOPs gathered from test libraries such as MINLPLib. The solver GUROBI gives the best performance on the reformulated MIQCPs and outperforms the generic global solvers BARON and SCIP. The MIQCP reformulation also improves the performance of SCIP compared to direct MIPOP solution, whereas the performance of BARON is comparable on the original MIPOPs and reformulated MIQCPs. Overall, these results establish the effectiveness of quadratic reformulation for MIPOP global optimization and support its integration into global solvers.

Journal article

Karia T, Adjiman CS, Chachuat B, 2021, Global Optimization of Mixed-Integer Polynomial Programs via Quadratic Reformulation, Computer Aided Chemical Engineering, Pages: 655-661

Mixed-integer polynomial programs (MIPOPs) frequently arise in chemical engineering applications such as pooling, blending and operations planning. Many global optimization solvers rely on mixed-integer linear (MIP) relaxations of MIPOPs and solve them repeatedly as part of a branch-and-bound algorithm using commercial MIP solvers. GUROBI, one of the prominent MIP solvers, recently added the capability to solve mixed-integer quadratically-constrained quadratic programs (MIQCQPs). This paper investigates global optimization of MIPOPs via their reformulation as MIQCQPs followed by their solution to global optimality using GUROBI. The effectiveness of this approach is tested on 60 instances of MIPOPs selected from the library MINLPLib. The performance of the MIQCQP reformulation approach is compared to the state-of-the-art global solvers BARON, ANTIGONE and SCIP in GAMS. For the case of single threading, a reduction of 28% and 42% compared to SCIP and ANTIGONE respectively is observed. This approach, therefore, holds promise for integration into existing global solvers to handle MIPOPs.

Book chapter

Chambon CL, Karia T, Sandwell P, Hallett JPet al., 2020, Techno-economic assessment of biomass gasification-based mini-grids for productive energy applications: The case of rural India, Renewable Energy, Vol: 154, Pages: 432-444, ISSN: 0960-1481

As the costs of solar PV continuously decrease and pollution legislation imposes less burning of agricultural residues, decentralized renewable energy is increasingly affordable for providing electricity to one billion people lacking access to a power grid. This paper presents a techno-economic feasibility case study of biomass gasification in off-grid and grid-connected mini-grids for community-scale energy application in rural Uttar Pradesh, India. Energy demand data was collected through surveys in a village with irrigation and agro-processing loads and off-grid households and used to construct a seasonal load profile based on statistical methods. This was used to simulate single-source and hybrid mini-grids based on solar PV, biomass gasification and diesel generation using HOMER Pro. Hybrid PV-biomass or PV-diesel systems were found to offer the highest reliability for off-grid power at the lowest cost. Single-source PV was cheaper than biomass gasification, though the cost of electricity is highly sensitive to biomass supply and gasifier maintenance. Both renewable options were around half the cost of diesel generation. The findings held across grid-connected systems with weak, moderate and strong reliability of grid supply. This suggests that biomass gasification-based mini-grids are not cost-competitive with PV unless the two generation sources are combined in a hybrid system, though they require operational testing prior to implementation.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=01371591&limit=30&person=true