Imperial College London

ProfessorThomasAnthopoulos

Faculty of Natural SciencesDepartment of Physics

Visiting Professor
 
 
 
//

Contact

 

+44 (0)20 7594 6669thomas.anthopoulos Website

 
 
//

Assistant

 

Mrs Carolyn Dale +44 (0)20 7594 7579

 
//

Location

 

1111Blackett LaboratorySouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

314 results found

Pattanasattayavong P, Mottram AD, Yan F, Anthopoulos TDet al., 2015, Study of the Hole Transport Processes in Solution-Processed Layers of the Wide Bandgap Semiconductor Copper(I) Thiocyanate (CuSCN), Advanced Functional Materials, Vol: 25, Pages: 6802-6813, ISSN: 1616-3028

Wide bandgap hole-transporting semiconductor copper(I) thiocyanate (CuSCN) has recently shown promise both as a transparent p-type channel material for thin-film transistors and as a hole-transporting layer in organic light-emitting diodes and organic photovoltaics. Herein, the hole-transport properties of solution-processed CuSCN layers are investigated. Metal–insulator–semiconductor capacitors are employed to determine key material parameters including: dielectric constant [5.1 (±1.0)], flat-band voltage [−0.7 (±0.1) V], and unintentional hole doping concentration [7.2 (±1.4) × 1017 cm−3]. The density of localized hole states in the mobility gap is analyzed using electrical field-effect measurements; the distribution can be approximated invoking an exponential function with a characteristic energy of 42.4 (±0.1) meV. Further investigation using temperature-dependent mobility measurements in the range 78–318 K reveals the existence of three transport regimes. The first two regimes observed at high (303–228 K) and intermediate (228–123 K) temperatures are described with multiple trapping and release and variable range hopping processes, respectively. The third regime observed at low temperatures (123–78 K) exhibits weak temperature dependence and is attributed to a field-assisted hopping process. The transitions between the mechanisms are discussed based on the temperature dependence of the transport energy.

JOURNAL ARTICLE

Jeong J, Seo J, Nam S, Han H, Kim H, Anthopoulos TD, Bradley DDC, Kim Yet al., 2015, Significant stability enhancement in high-efficiency polymer:fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light, Advanced Science, Vol: 3, ISSN: 2198-3844

JOURNAL ARTICLE

Al-Hashimi M, Han Y, Smith J, Bazzi HS, Alqaradawi SYA, Watkins SE, Anthopoulos TD, Heeney Met al., 2015, Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene-vinylene copolymers, Chemical Science, Vol: 7, Pages: 1093-1099, ISSN: 2041-6539

We report the first soluble poly(3-dodecyl tellurophenylene-vinylene) polymer (P3TeV) by Stille copolymerization and compare its properties to the analogous thiophene and selenophene containing polymers. The optical band gap of the polymers is shown to systematically decrease as the size of the heteroatom is increased, mainly as a result of a stabilization of the LUMO energy, resulting in a small band gap of 1.4 eV for P3TeV. Field effect transistors measurements in variety of architectures demonstrate that the selenophene polymer exhibits the highest mobility, highlighting that increasing the size of the heteroatom is not always beneficial for charge transport.

JOURNAL ARTICLE

Heeney MJ, Han Y, Fei Z, McCulloch I, Stingelin N, Treat N, Anthopoulos T, Faber H, Zhang W, Zhu X, Feng Yet al., 2015, A Novel Alkylated Indacenodithieno[3,2-b]thiophene-based Polymer for High-performance Field Effect Transistors, Advanced Materials, Vol: 28, Pages: 3922-3927, ISSN: 1521-4095

A novel rigid donor monomer, indacenodithieno[3,2-b]thiophene (IDTT), containing linear alkyl chains is reported. Its copolymer with benzothiadiazole is an excellent p-type semiconductor, affording a mobility of 6.6 cm² V⁻¹ s⁻¹ in top-gated field-effect transistors with pentafluorobenzenethiol-modified Au electrodes. Electrode treatment with solution-deposited copper(I) thiocyanate (CuSCN) has a beneficial hole-injection/electron-blocking effect, further enhancing the mobility to 8.7 cm² V⁻¹ s⁻¹.

JOURNAL ARTICLE

Boufflet P, Han Y, Fei Z, Treat ND, Li R, Smilgies D-M, Stingelin N, Anthopoulos TD, Heeney MJet al., 2015, Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene (pBTTT), Advanced Functional Materials, Vol: 25, Pages: 7038-7048, ISSN: 1616-3028

The synthesis of a novel 3,3'-difluoro-4,4'-dihexadecyl-2,2'-bithiophene monomer and its copolymerisation with thieno[3,2-b]thiophene to afford the fluorinated analogue of the well-known poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene) (PBTTT) polymer is reported. Fluorination is found to have a significant influence on the physical properties of the polymer, enhancing aggregation in solution and increasing melting point by over 100 °C compared to non-fluorinated polymer. On the basis of DFT calculations these observations are attributed to inter- and intra-molecular S…F interactions. As a consequence, the fluorinated polymer PFBTTT exhibits a four-fold increase in charge carrier mobility compared to the non-fluorinated polymer and excellent ambient stability for a non-encapsulated transistor device.

JOURNAL ARTICLE

Casey A, Han Y, Wyatt MF, Anthopoulos TD, Heeney Met al., 2015, Novel soluble thieno[3,2-b]thiophene fused porphyrazine, RSC Advances, Vol: 5, Pages: 90645-90650, ISSN: 2046-2069

The synthesis of the first soluble thieno[3,2-b]thiophene based porphyrazine (ZnTTPz) is reported from the cyclisation of 2,3-dicyano-5-octylthieno[3,2-b]thiophene. ZnTTPz can be considered the all thiophene analogue of naphthalocyanine. ZnTTPz exhibits a red-shifted absorption in solution and thin film, as well as a reduced band gap in comparison to the thiophene analogue due to an increased conjugation length. Films of ZnTTPz processed from solution exhibit p-type semiconducting behaviour in field-effect transistors with low hysteresis and reasonable charge carrier mobility.

JOURNAL ARTICLE

Mendaza ADDZ, Melianas A, Rossbauer S, Backe O, Nordstierna L, Erhart P, Olsson E, Anthopoulos TD, Inganas O, Muller Cet al., 2015, High-entropy mixtures of pristine fullerenes for solution-processed transistors and solar cells, Advanced Materials, Vol: 27, Pages: 7325-7331, ISSN: 1521-4095

JOURNAL ARTICLE

Schießl SP, Faber H, Lin YH, Rossbauer S, Wang Q, Zhao K, Amassian A, Zaumseil J, Anthopoulos TDet al., 2015, Hybrid modulation-doping of solution-processed ultrathin layers of ZnO using molecular dopants, Advanced Materials, Vol: 28, Pages: 3952-3959, ISSN: 1521-4095

An alternative doping approach that exploits the use of organic donor/acceptor molecules for the effective tuning of the free electron concentration in quasi 2D ZnO transistor channel layers is reported. The method relies on the deposition of molecular dopants/formulations directly onto the ultrathin ZnO channels. Through careful choice of materials combinations, electron transfer from the dopant molecule to ZnO and vice versa is demonstrated.

JOURNAL ARTICLE

Noh Y-Y, Xu Y, Caironi M, Anthopoulos TDet al., 2015, Preface: Printed electronics, SEMICONDUCTOR SCIENCE AND TECHNOLOGY, Vol: 30, ISSN: 0268-1242

JOURNAL ARTICLE

Labram JG, Lin YH, Anthopoulos TD, 2015, Exploring Two-Dimensional Transport Phenomena in Metal Oxide Heterointerfaces for Next-Generation, High-Performance, Thin-Film Transistor Technologies., Small, Vol: 11, Pages: 5472-5482, ISSN: 1613-6810

In the last decade, metal oxides have emerged as a fascinating class of electronic material, exhibiting a wide range of unique and technologically relevant characteristics. For example, thin-film transistors formed from amorphous or polycrystalline metal oxide semiconductors offer the promise of low-cost, large-area, and flexible electronics, exhibiting performances comparable to or in excess of incumbent silicon-based technologies. Atomically flat interfaces between otherwise insulating or semiconducting complex oxides, are also found to be highly conducting, displaying 2-dimensional (2D) charge transport properties, strong correlations, and even superconductivity. Field-effect devices employing such carefully engineered interfaces are hoped to one day compete with traditional group IV or III-V semiconductors for use in the next-generation of high-performance electronics. In this Concept article we provide an overview of the different metal oxide transistor technologies and potential future research directions. In particular, we look at the recent reports of multilayer oxide thin-film transistors and the possibility of 2D electron transport in these disordered/polycrystalline systems and discuss the potential of the technology for applications in large-area electronics.

JOURNAL ARTICLE

Dhar J, Mukhopadhay T, Yaacobi-Gross N, Anthopoulos TD, Salzner U, Swaraj S, Patil Set al., 2015, Effect of Chalcogens on Electronic and Photophysical Properties of Vinylene-Based Diketopyrrolopyrrole Copolymers, JOURNAL OF PHYSICAL CHEMISTRY B, Vol: 119, Pages: 11307-11316, ISSN: 1520-6106

JOURNAL ARTICLE

Wijeyasinghe N, Anthopoulos TD, 2015, Copper(I) thiocyanate (CuSCN) as a hole-transport material for large-area opto/electronics, Semiconductor Science and Technology, Vol: 30, ISSN: 1361-6641

Recent advances in large-area optoelectronics research have demonstrated the tremendous potential of copper(I) thiocyanate (CuSCN) as a universal hole-transport interlayer material for numerous applications, including transparent thin-film transistors, high-efficiency organic and hybrid organic-inorganic photovoltaic cells, and organic light-emitting diodes. CuSCN combinesintrinsic hole-transport (p-type) characteristics with a large bandgap (>3.5 eV) which facilitates optical transparency across the visible to near infrared part of the electromagnetic spectrum.Furthermore, CuSCN is readily available from commercial sources while it is inexpensive and can be processed at low-temperatures using solution-based techniques. This unique combination of desirable characteristics makes CuSCN a promising material for application in emerging large-area optoelectronics. In this review article, we outline some important properties of CuSCN and examine its use in the fabrication of potentially low-cost optoelectronic devices. The meritsof using CuSCN in numerous emerging applications as an alternative to conventional holetransport materials are also discussed.

JOURNAL ARTICLE

Fallon KJ, Wijeyasinghe N, Yaacobi-Gross N, Ashraf RS, Freeman DME, Palgrave RG, Al-Hashimi M, Marks TJ, McCulloch I, Anthopoulos TD, Bronstein Het al., 2015, A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells, MACROMOLECULES, Vol: 48, Pages: 5148-5154, ISSN: 0024-9297

JOURNAL ARTICLE

Zhong H, Han Y, Shaw J, Anthopoulos TD, Heeney Met al., 2015, Fused ring cyclopentadithienothiophenes as novel building blocks for high field effect mobility conjugated polymers, Macromolecules, Vol: 48, Pages: 5605-5613, ISSN: 0024-9297

JOURNAL ARTICLE

Treat ND, Yaacobi-Gross N, Faber H, Perumal AK, Bradley DDC, Stingelin N, Anthopoulos TDet al., 2015, Copper thiocyanate: An attractive hole transport/extraction layer for use in organic photovoltaic cells, Applied Physics Letters, Vol: 107, ISSN: 1077-3118

We report the advantageous properties of the inorganic molecular semiconductor copper(I)thiocyanate (CuSCN) for use as a hole collection/transport layer (HTL) in organic photovoltaic(OPV) cells. CuSCN possesses desirable HTL energy levels [i.e., valence band at 5.35 eV,0.35 eV deeper than poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS)], whichproduces a 17% increase in power conversion efficiency (PCE) relative to PEDOT:PSS-baseddevices. In addition, a two-fold increase in shunt resistance for the solar cells measured in dark conditionsis achieved. Ultimately, CuSCN enables polymer:fullerene based OPV cells to achievePCE > 8%. CuSCN continues to offer promise as a chemically stable and straightforward replacementfor the commonly used PEDOT:PSS.

JOURNAL ARTICLE

Schroeder BC, Nielsen CB, Westacott P, Smith J, Rossbauer S, Anthopoulos TD, Stingelin N, McCulloch Iet al., 2015, Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities, MRS Communications, Vol: 5, Pages: 435-440, ISSN: 2159-6867

JOURNAL ARTICLE

Peng Y, Yaacobi-Gross N, Perumal AK, Faber HA, Vourlias G, Patsalas PA, Bradley DDC, He Z, Anthopoulos TDet al., 2015, Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers, Applied Physics Letters, Vol: 106, ISSN: 1077-3118

We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulkheterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transportlayer (HTL). Our devices exhibit a PCE value of 5.5% which is equivalent to that obtained forcontrol devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene):polystyrenesulfonate as HTL. Inverted cells with PCE>3% were also demonstrated using solutionprocessedmetal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. Thehigh optical transparency and suitable energetics of CuI make it attractive for application in a range ofinexpensive large-area optoelectronic devices.

JOURNAL ARTICLE

Hunter BS, Ward JW, Payne MM, Anthony JE, Jurchescu OD, Anthopoulos TDet al., 2015, Low-voltage polymer/small-molecule blend organic thin-film transistors and circuits fabricated via spray deposition, Applied Physics Letters, Vol: 106, ISSN: 1077-3118

Organic thin-film electronics have long been considered an enticing candidate in achieving highthroughput manufacturing of low-power ubiquitous electronics. However, to achieve this goal, more work is required to reduce operating voltages and develop suitable mass-manufacture techniques.Here, we demonstrate low-voltage spray-cast organic thin-film transistors based on a semiconductor blend of 2,8-difluoro- 5,11-bis (triethylsilylethynyl) anthradithiophene and poly(triarylamine). Both semiconductor and dielectric films are deposited via successive spray deposition in ambient conditions(air with 40%–60% relative humidity) without any special precautions. Despite the simplicity of the deposition method, p-channel transistors with hole mobilities of >1 cm2 /Vs are realized at 4 V operation, and unipolar inverters operating at 6 V are demonstrated.

JOURNAL ARTICLE

Lin Y-H, Faber H, Labram JG, Stratakis E, Sygellou L, Kymakis E, Hastas NA, Li R, Zhao K, Amassian A, Treat ND, McLachlan M, Anthopoulos TDet al., 2015, High Electron Mobility Thin-Film Transistors Based on Solution-Processed Semiconducting Metal Oxide Heterojunctions and Quasi-Superlattices, Advanced Science, Vol: 2, ISSN: 2198-3844

High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of In2O3, Ga2O3, and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180–200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25–45 cm2 V−1 s−1) than single oxide devices (typically 2–5 cm2 V−1 s−1). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

JOURNAL ARTICLE

Bottacchi F, 2015, Polymer-sorted (6,5) single-walled carbon nanotubes for solution-processed low-voltage flexible microelectronics, Applied Physics Letters, Vol: 106, ISSN: 0003-6951

We report on low operating voltage transistors based on polymer-sorted semiconducting (6,5) single-walled carbon nanotube (SWNT) networks processed from solution at room temperature. The (6,5) SWNTs were separated from the as-received carbon nanotubes mixture using a polyfluorene-based derivative as the sorting and dispersing polymer agent. As-prepared devices exhibit primarily p-type behavior with channel current on/off ratio >103 and hole mobility ≈2 cm2 V−1 s−1. These transistor characteristics enable realization of low-voltage unipolar inverters with wide noise margins and high signal gain (>5). Polymer/(6,5) SWNT transistors were also fabricated on free-standing polyimide foils. The devices exhibit even higher hole mobility (≈8 cm2 V−1 s−1) and on/off ratios (>104) while remaining fully functional when bent to a radius of 4 mm.

JOURNAL ARTICLE

Andernach RE, Rossbauer S, Ashraf RS, Faber H, Anthopoulos TD, McCulloch I, Heeney M, Bronstein HAet al., 2015, Conjugated Polymer-Porphyrin Complexes for Organic Electronics, CHEMPHYSCHEM, Vol: 16, Pages: 1223-1230, ISSN: 1439-4235

JOURNAL ARTICLE

Pitsalidis C, Pappa A-M, Hunter S, Payne MM, Anthony JE, Anthopoulos TD, Logothetidis Set al., 2015, Electrospray-Processed Soluble Acenes toward the Realization of High-Performance Field-Effect Transistors, ACS APPLIED MATERIALS & INTERFACES, Vol: 7, Pages: 6496-6504, ISSN: 1944-8244

JOURNAL ARTICLE

Petti L, Faber H, Muenzenrieder N, Cantarella G, Patsalas PA, Troester G, Anthopoulos TDet al., 2015, Low-temperature spray-deposited indium oxide for flexible thin-film transistors and integrated circuits, Applied Physics Letters, Vol: 106, ISSN: 1077-3118

Indium oxide (In2O3) films were deposited by ultrasonic spray pyrolysis in ambient air and incorporated into bottom-gate coplanar and staggered thin-film transistors. As-fabricated devices exhibited electron-transporting characteristics with mobility values of 1 cm2V−1s−1 and 16 cm2V−1s−1 for coplanar and staggered architectures, respectively. Integration of In2O3 transistors enabled realization of unipolar inverters with high gain (5.3 V/V) and low-voltage operation. The low temperature deposition (≤250 °C) of In2O3 also allowed transistor fabrication on free-standing 50 μm-thick polyimide foils. The resulting flexible In2O3 transistors exhibit good characteristics and remain fully functional even when bent to tensile radii of 4 mm.

JOURNAL ARTICLE

Labram JG, Lin Y-H, Zhao K, Li R, Thomas SR, Semple J, Androulidaki M, Sygellou L, McLachlan M, Stratakis E, Amassian A, Anthopoulos TDet al., 2015, Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices, Advanced Functional Materials, Vol: 25, Pages: 1727-1736, ISSN: 1616-3028

Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2–24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current–voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2–7.

JOURNAL ARTICLE

Faber H, Lin Y-H, Thomas SR, Zhao K, Pliatsikas N, McLachlan MA, Amassian A, Patsalas PA, Anthopoulos TDet al., 2015, Indium Oxide Thin-Film Transistors Processed at Low Temperature via Ultrasonic Spray Pyrolysis, ACS APPLIED MATERIALS & INTERFACES, Vol: 7, Pages: 782-790, ISSN: 1944-8244

JOURNAL ARTICLE

Paterson AF, Anthopoulos TD, 2015, Organic blend semiconductors and transistors with hole mobility exceeding 10 cm2/Vs, Conference on Organic Field-Effect Transistors XIV; and Organic Sensors and Bioelectronics VIII, Publisher: SPIE-INT SOC OPTICAL ENGINEERING, ISSN: 0277-786X

CONFERENCE PAPER

Singh R, Pagona G, Gregoriou VG, Tagmatarchis N, Toliopoulos D, Han Y, Fei Z, Katsouras A, Avgeropoulos A, Anthopoulos TD, Heeney M, Keivanidis PE, Chochos CLet al., 2015, The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor-acceptor copolymers, POLYMER CHEMISTRY, Vol: 6, Pages: 3098-3109, ISSN: 1759-9954

JOURNAL ARTICLE

Hermerschmidt F, Kalogirou AS, Min J, Zissimou GA, Tuladhar SM, Ameri T, Faber H, Itskos G, Choulis SA, Anthopoulos TD, Bradley DDC, Nelson J, Brabec CJ, Koutentis PAet al., 2015, 4H-1,2,6-Thiadiazin-4-one-containing small molecule donors and additive effects on their performance in solution-processed organic solar cells, JOURNAL OF MATERIALS CHEMISTRY C, Vol: 3, Pages: 2358-2365, ISSN: 2050-7526

JOURNAL ARTICLE

Steiner F, Foster S, Losquin A, Labram J, Anthopoulos TD, Frost JM, Nelson Jet al., 2015, Distinguishing the influence of structural and energetic disorder on electron transport in fullerene multi-adducts, MATERIALS HORIZONS, Vol: 2, Pages: 113-119, ISSN: 2051-6347

JOURNAL ARTICLE

Casey A, Han Y, Fei Z, White AJP, Anthopoulos TD, Heeney Met al., 2015, Cyano substituted benzothiadiazole: a novel acceptor inducing n-type behaviour in conjugated polymers, JOURNAL OF MATERIALS CHEMISTRY C, Vol: 3, Pages: 265-275, ISSN: 2050-7526

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00397485&limit=30&person=true&page=4&amp%3bid=00397485&amp%3brespub-action=search.html&amp%3bperson=true&respub-action=search.html&amp%3bpage=6