Imperial College London


Central FacultyStudent Recruitment and Outreach








301Molecular Sciences Research HubWhite City Campus





Publication Type

8 results found

Chan TG, Ruehl CL, Morse SV, Simon M, Rakers V, Watts H, Aprile FA, Choi JJ, Vilar Ret al., 2021, Modulation of amyloid-beta aggregation by metal complexes with a dual binding mode and their delivery across the blood-brain barrier using focused ultrasound, Chemical Science, Vol: 12, Pages: 9485-9493, ISSN: 2041-6520

One of the key hallmarks of Alzheimer's disease is the aggregation of the amyloid-β peptide to form fibrils. Consequently, there has been great interest in studying molecules that can disrupt amyloid-β aggregation. While a handful of molecules have been shown to inhibit amyloid-β aggregation in vitro, there remains a lack of in vivo data reported due to their inability to cross the blood–brain barrier. Here, we investigate a series of new metal complexes for their ability to inhibit amyloid-β aggregation in vitro. We demonstrate that octahedral cobalt complexes with polyaromatic ligands have high inhibitory activity thanks to their dual binding mode involving π–π stacking and metal coordination to amyloid-β (confirmed via a range of spectroscopic and biophysical techniques). In addition to their high activity, these complexes are not cytotoxic to human neuroblastoma cells. Finally, we report for the first time that these metal complexes can be safely delivered across the blood–brain barrier to specific locations in the brains of mice using focused ultrasound.

Journal article

Chan TG, O'Neill E, Habjan C, Cornelissen Bet al., 2020, Combination Strategies to Improve Targeted Radionuclide Therapy, JOURNAL OF NUCLEAR MEDICINE, Vol: 61, Pages: 1544-1552, ISSN: 0161-5505

Journal article

Morse SV, Boltersdorf T, Chan TG, Gavins FNE, Choi JJ, Long NJet al., 2020, In vivo delivery of a fluorescent FPR2/ALX-targeted probe using focused ultrasound and microbubbles to image activated microglia, RSC Chemical Biology, Vol: 1, Pages: 385-389, ISSN: 2633-0679

To image activated microglia, a small-molecule FPR2/ALX-targeted fluorescent probe was locally delivered into the brain using focused ultrasound and microbubbles. The probe did not co-localise with neurons or astrocytes but accumulated in activated microglia, making this a potential imaging tool for future drug discovery programs focused on neurological disorders.

Journal article

Vilar R, Torres Huerta A, Chan TG, White AJPet al., 2020, Molecular recognition of bisphosphonate-based drugs by di-zinc receptors in aqueous solution and on gold nanoparticles, Dalton Transactions, Vol: 49, Pages: 5939-5948, ISSN: 1477-9226

Metal-based anion receptors have several important applications in sensing, separation and transport of negatively charged species. Amongst these receptors, di-zinc(II) complexes are of particular interest for the recognition of oxoanions, in particular phosphate derivatives. Herein we report the synthesis of a di-zinc(II) receptor and show that it has high affinity and selectivity for bisphosphonates such as alendronate and etidronate – which are used to treat a number of skeletal disorders as well as showing interesting anticancer properties. The binding mode of the di-zinc(II) receptor with alendronate and etidronate has been unambiguously established by single crystal X-ray crystallography. In addition, by modifying the backbone of the receptor, we show that the drug-loaded receptor can be attached onto gold nanoparticles as potential drug-delivery vehicles.

Journal article

Morse SV, Boltersdorf T, Harriss BI, Chan TG, Baxan N, Jung HS, Pouliopoulos AN, Choi JJ, Long NJet al., 2020, Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound, Theranostics, Vol: 10, Pages: 2659-2674, ISSN: 1838-7640

Journal article

Morse SV, Pouliopoulos AN, Chan TG, Copping MJ, Lin J, Long NJ, Choi JJet al., 2019, Rapid short-pulse ultrasound delivers drugs uniformly across the murine blood-brain barrier with negligible disruption, Radiology, Vol: 291, Pages: 459-466, ISSN: 0033-8419

Background Previous work has demonstrated that drugs can be delivered across the blood-brain barrier by exposing circulating microbubbles to a sequence of long ultrasound pulses. Although this sequence has successfully delivered drugs to the brain, concerns remain regarding potentially harmful effects from disrupting the brain vasculature. Purpose To determine whether a low-energy, rapid, short-pulse ultrasound sequence can efficiently and safely deliver drugs to the murine brain. Materials and Methods Twenty-eight female wild-type mice underwent focused ultrasound treatment after injections of microbubbles and a labeled model drug, while three control mice were not treated (May-November 2017). The left hippocampus of 14 mice was exposed to low-energy short pulses (1 MHz; five cycles; peak negative pressure, 0.35 MPa) of ultrasound emitted at a rapid rate (1.25 kHz) in bursts (0.5 Hz), and another 14 mice were exposed to standard long pulses (10 msec, 0.5 Hz) containing 150 times more acoustic energy. Mice were humanely killed at 0 (n = 5), 10 (n = 3), or 20 minutes (n = 3) after ultrasound treatment. Hematoxylin-eosin (H-E) staining was performed on three mice. The delivered drug dose and distribution were quantified with the normalized optical density and coefficient of variation. Safety was assessed by H-E staining, the amount of albumin released, and the duration of permeability change in the blood-brain barrier. Statistical analysis was performed by using the Student t test. Results The rapid short-pulse sequence delivered drugs uniformly throughout the parenchyma. The acoustic energy emitted from the microbubbles also predicted the delivered dose (r = 0.97). Disruption in the blood-brain barrier lasted less than 10 minutes and 3.4-fold less albumin was released into the brain than with long pulses. No vascular or tissue damage from rapid short-pulse exposure was observable using H-E staining. Conclusion The rapid short-pulse ultrasound sequence is a minimally

Journal article

Chan T, Morse S, Copping M, Choi J, Vilar Compte Ret al., 2018, Targeted delivery of DNA-Au nanoparticles across the blood-brain barrier using focused ultrasound, ChemMedChem, Vol: 13, Pages: 1311-1314, ISSN: 1860-7187

Nanoparticles have been widely studied as versatile platforms for in vivo imaging and therapy. However, their use to image and/or treat the brain is limited, as they are often unable to cross the blood–brain barrier (BBB). To overcome this problem, herein we report the use of focused ultrasound in vivo to successfully deliver DNA‚Äźcoated gold nanoparticles to specific locations in the brains of mice.

Journal article

Morse SV, Pouliopoulos AN, Chan T, Lin J, Copping M, Long NJ, Choi JJet al., 2017, Rapid short-pulse (RaSP) sequences improve the distribution of drug delivery to the brain in vivo, IEEE UFFC, Publisher: IEEE, ISSN: 1948-5719

Focused ultrasound and microbubbles have been shown to locally and noninvasively open the blood-brain barrier. Despite encouraging results in human patients, several performance and safety features, such as poor drug distribution, high drug accumulation along vessels and small sites of red blood cell extravasation, have been unavoidable. We have recently developed a new ultrasound sequence - rapid short-pulse (RaSP) sequence - designed to suppress these adverse features by promoting safer modes of cavitation activity throughout capillaries. In our RaSP sequences, low-pressure short ultrasonic pulses are emitted at kHz pulse repetition frequencies (PRF) and grouped into bursts. We have shown in vitro that RaSP sequences prolong microbubble lifetime and increase their mobility, enhancing the distribution of acoustic cavitation activity. Here we evaluate the ability of RaSP sequences to improve the in vivo performance and safety of ultrasound-mediated drug delivery to the brain.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00682419&limit=30&person=true