Imperial College London

DrJamesBennett

Faculty of MedicineSchool of Public Health

Statistical Manager
 
 
 
//

Contact

 

umahx99

 
 
//

Location

 

1120Sir Michael Uren HubWhite City Campus

//

Summary

 

Publications

Publication Type
Year
to

100 results found

Kontis V, Bennett JE, Rashid T, Parks RM, Pearson-Stuttard J, Guillot M, Asaria P, Zhou B, Battaglini M, Corsetti G, McKee M, Di Cesare M, Mathers CD, Ezzati Met al., 2021, Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries (vol 26, pg 1919, 2020), NATURE MEDICINE, Vol: 27, Pages: 562-562, ISSN: 1078-8956

Journal article

Kontis V, Bennett JE, Parks RM, Rashid T, Pearson-Stuttard J, Asaria P, Zhou B, Guillot M, Mathers CD, Khang YH, McKee M, Ezzati M, Gupta R, Gómez-Rubio Vet al., 2021, Lessons learned and lessons missed: Impact of the coronavirus disease 2019 (covid-19) pandemic on all-cause mortality in 40 industrialised countries prior to mass vaccination [version 1; peer review: 2 approved with reservations], Wellcome Open Research, Vol: 6

Background: Industrialised countries had varied responses to the coronavirus disease 2019 (COVID-19) pandemic, and how they adapted to new situations and knowledge since it began. These differences in preparedness and policy may lead to different death tolls from COVID-19 as well as other diseases. Methods: We applied an ensemble of 16 Bayesian probabilistic models to vital statistics data to estimate the impacts of the pandemic on weekly all-cause mortality for 40 industrialised countries from mid- February 2020 through mid-February 2021, before a large segment of the population was vaccinated in these countries. Results: Over the entire year, an estimated 1,410,300 (95% credible interval 1,267,600-1,579,200) more people died in these countries than would have been expected had the pandemic not happened. This is equivalent to 141 (127-158) additional deaths per 100,000 people and a 15% (14-17) increase in deaths in all these countries combined. In Iceland, Australia and New Zealand, mortality was lower than would be expected if the pandemic had not occurred, while South Korea and Norway experienced no detectable change in mortality. In contrast, the USA, Czechia, Slovakia and Poland experienced at least 20% higher mortality. There was substantial heterogeneity across countries in the dynamics of excess mortality. The first wave of the pandemic, from mid-February to the end of May 2020, accounted for over half of excess deaths in Scotland, Spain, England and Wales, Canada, Sweden, Belgium, the Netherlands and Cyprus. At the other extreme, the period between mid-September 2020 and mid-February 2021 accounted for over 90% of excess deaths in Bulgaria, Croatia, Czechia, Hungary, Latvia, Montenegro, Poland, Slovakia and Slovenia. Conclusions: Until the great majority of national and global populations have vaccine-acquired immunity, minimising the death toll of the pandemic from COVID-19 and other diseases will require actions to delay and contain infections and continu

Journal article

Konstantinoudis G, Padellini T, Bennett J, Davies B, Blangiardo Met al., 2021, Long-term exposure to air-pollution and COVID-19 mortality in England: a hierarchical spatial analysis, Environment International, Vol: 146, ISSN: 0160-4120

Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 mortality in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n = 32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014–2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: −0.2%, 1.2%) and 1.4% (95% CrI: −2.1%, 5.1%) increase in COVID-19 mortality risk for every 1 μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.

Journal article

Zhou B, Carrillo-Larco RM, Danaei G, Riley LM, Paciorek CJ, Stevens GA, Gregg EW, Bennett JE, Solomon B, Singleton RKet al., 2021, Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants, The Lancet, Vol: 398, Pages: 957-980, ISSN: 0140-6736

Journal article

Parks RM, Bennett JE, Tamura-Wicks H, Kontis V, Toumi R, Danaei G, Ezzati Met al., 2020, Reply to: Concerns over calculating injury-related deaths associated with temperature, NATURE MEDICINE, Vol: 26, ISSN: 1078-8956

Journal article

Rodriguez-Martinez A, Zhou B, Sophiea MK, Bentham J, Paciorek CJ, Iurilli ML, Carrillo-Larco RM, Bennett JE, Di Cesare M, Taddei C, Bixby H, Stevens GA, Riley LM, Cowan MJ, Savin S, Danaei G, Chirita-Emandi A, Kengne AP, Khang YH, Laxmaiah A, Malekzadeh R, Miranda JJ, Moon JS, Popovic SR, Sørensen TI, Soric M, Starc G, Zainuddin AA, Gregg EW, Bhutta ZA, Black R, Abarca-Gómez L, Abdeen ZA, Abdrakhmanova S, Abdul Ghaffar S, Abdul Rahim HF, Abu-Rmeileh NM, Abubakar Garba J, Acosta-Cazares B, Adams RJ, Aekplakorn W, Afsana K, Afzal S, Agdeppa IA, Aghazadeh-Attari J, Aguilar-Salinas CA, Agyemang C, Ahmad MH, Ahmad NA, Ahmadi A, Ahmadi N, Ahmed SH, Ahrens W, Aitmurzaeva G, Ajlouni K, Al-Hazzaa HM, Al-Othman AR, Al-Raddadi R, Alarouj M, AlBuhairan F, AlDhukair S, Ali MM, Alkandari A, Alkerwi A, Allin K, Alvarez-Pedrerol M, Aly E, Amarapurkar DN, Amiri P, Amougou N, Amouyel P, Andersen LB, Anderssen SA, Ängquist L, Anjana RM, Ansari-Moghaddam A, Aounallah-Skhiri H, Araújo J, Ariansen I, Aris T, Arku RE, Arlappa N, Aryal KK, Aspelund T, Assah FK, Assunção MCF, Aung MS, Auvinen J, Avdicová M, Azevedo A, Azimi-Nezhad M, Azizi F, Azmin M, Babu BV, Bæksgaard Jørgensen M, Baharudin A, Bahijri S, Baker JL, Balakrishna N, Bamoshmoosh Met al., 2020, Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants, The Lancet, Vol: 396, Pages: 1511-1524, ISSN: 0140-6736

SummaryBackgroundComparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents.MethodsFor this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence.FindingsWe pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became

Journal article

Kontis V, Bennett JE, Rashid T, Parks RM, Pearson-Stuttard J, Guillot M, Asaria P, Zhou B, Battaglini M, Corsetti G, McKee M, Di Cesare M, Mathers CD, Ezzati Met al., 2020, Magnitude, demographics and dynamics of the effect of the first wave of the COVID-19 pandemic on all-cause mortality in 21 industrialized countries, Nature Medicine, Vol: 26, Pages: 1919-1928, ISSN: 1078-8956

The Coronavirus Disease 2019 (COVID-19) pandemic has changed many social, economic, environmental and healthcare determinants of health. We applied an ensemble of 16 Bayesian models to vital statistics data to estimate the all-cause mortality effect of the pandemic for 21 industrialized countries. From mid-February through May 2020, 206,000 (95% credible interval, 178,100–231,000) more people died in these countries than would have had the pandemic not occurred. The number of excess deaths, excess deaths per 100,000 people and relative increase in deaths were similar between men and women in most countries. England and Wales and Spain experienced the largest effect: ~100 excess deaths per 100,000 people, equivalent to a 37% (30–44%) relative increase in England and Wales and 38% (31–45%) in Spain. Bulgaria, New Zealand, Slovakia, Australia, Czechia, Hungary, Poland, Norway, Denmark and Finland experienced mortality changes that ranged from possible small declines to increases of 5% or less in either sex. The heterogeneous mortality effects of the COVID-19 pandemic reflect differences in how well countries have managed the pandemic and the resilience and preparedness of the health and social care system.

Journal article

Carrillo Larco R, Bennett JE, Di Cesare M, Gregg EW, Bernabe-Ortiz Aet al., 2020, The contribution of specific non-communicable diseases to the achievement of the Sustainable Development Goal 3.4 in Peru, PLoS One, Vol: 15, ISSN: 1932-6203

BackgroundNon-communicable diseases (NCDs) have received political attention and commitment, yet surveillance is needed to measure progress and set priorities. Building on global estimates suggesting that Peru is not on target to meet the Sustainable Development Goal 3.4, we estimated the contribution of various NCDs to the change in unconditional probability of dying from NCDs in 25 regions in Peru.MethodsUsing national death registries and census data, we estimated the unconditional probability of dying between ages 30 and 69 from any and from each of the following NCDs: cardiovascular, cancer, diabetes, chronic respiratory diseases and chronic kidney disease. We estimated the contribution of each NCD to the change in the unconditional probability of dying from any of these NCDs between 2006 and 2016.ResultsThe overall unconditional probability of dying improved for men (21.4%) and women (23.3%). Cancer accounted for 10.9% in men and 13.7% in women of the overall reduction; cardiovascular diseases also contributed substantially: 11.3% in men) and 9.8% in women. Consistently in men and women and across regions, diabetes moved in the opposite direction of the overall reduction in the unconditional probability of dying from any selected NCD. Diabetes contributed a rise in the unconditional probability of 3.6% in men and 2.1% in women.ConclusionsAlthough the unconditional probability of dying from any selected NCD has decreased, diabetes would prevent Peru from meeting international targets. Policies are needed to prevent diabetes and to strengthen healthcare to avoid diabetes-related complications and delay mortality.

Journal article

NCD Countdown 030 collaborators, Bennett JE, Kontis V, Mathers CD, Guillot M, Rehm J, Chalkidou K, Kengne AP, Carrillo-Larco RM, Bawah AA, Dain K, Varghese C, Riley LM, Bonita R, Kruk ME, Beaglehole R, Ezzati Met al., 2020, NCD countdown 2030: pathways to achieving sustainable development goal target 3.4, The Lancet, Vol: 396, Pages: 918-934, ISSN: 0140-6736

The Sustainable Development Goal (SDG) target 3.4 is to reduce premature mortality from non-communicable diseases (NCDs) by a third by 2030 relative to 2015 levels, and to promote mental health and wellbeing. We used data on cause-specific mortality to characterise the risk and trends in NCD mortality in each country and evaluate combinations of reductions in NCD causes of death that can achieve SDG target 3.4. Among NCDs, ischaemic heart disease is responsible for the highest risk of premature death in more than half of all countries for women, and more than three-quarters for men. However, stroke, other cardiovascular diseases, and some cancers are associated with a similar risk, and in many countries, a higher risk of premature death than ischaemic heart disease. Although premature mortality from NCDs is declining in most countries, for most the pace of change is too slow to achieve SDG target 3.4. To investigate the options available to each country for achieving SDG target 3.4, we considered different scenarios, each representing a combination of fast (annual rate achieved by the tenth best performing percentile of all countries) and average (median of all countries) declines in risk of premature death from NCDs. Pathways analysis shows that every country has options for achieving SDG target 3.4. No country could achieve the target by addressing a single disease. In at least half the countries, achieving the target requires improvements in the rate of decline in at least five causes for women and in at least seven causes for men to the same rate achieved by the tenth best performing percentile of all countries. Tobacco and alcohol control and effective health-system interventions—including hypertension and diabetes treatment; primary and secondary cardiovascular disease prevention in high-risk individuals; low-dose inhaled corticosteroids and bronchodilators for asthma and chronic obstructive pulmonary disease; treatment of acute cardiovascular diseases

Journal article

Konstantinoudis G, Padellini T, Bennett J, Davies B, Ezzati M, Blangiardo Met al., 2020, Long-term exposure to air-pollution and COVID-19 mortality in England: a hierarchical spatial analysis, Publisher: MedRxiv

Recent studies suggested a link between long-term exposure to air-pollution and COVID-19 mortality. However, due to their ecological design based on large spatial units, they neglect the strong localised air-pollution patterns, and potentially lead to inadequate confounding adjustment. We investigated the effect of long-term exposure to NO2 and PM2.5 on COVID-19 deaths up to June 30, 2020 in England using high geographical resolution. In this nationwide cross-sectional study in England, we included 38,573 COVID-19 deaths up to June 30, 2020 at the Lower Layer Super Output Area level (n=32,844 small areas). We retrieved averaged NO2 and PM2.5 concentration during 2014-2018 from the Pollution Climate Mapping. We used Bayesian hierarchical models to quantify the effect of air-pollution while adjusting for a series of confounding and spatial autocorrelation. We find a 0.5% (95% credible interval: -0.2%, 1.2%) and 1.4% (95% CrI: -2.1%, 5.1%) increase in COVID-19 mortality risk for every 1μg/m3 increase in NO2 and PM2.5 respectively, after adjusting for confounding and spatial autocorrelation. This corresponds to a posterior probability of a positive effect equal to 0.93 and 0.78 respectively. The spatial relative risk at LSOA level revealed strong patterns, similar for the different pollutants. This potentially captures the spread of the disease during the first wave of the epidemic. Our study provides some evidence of an effect of long-term NO2 exposure on COVID-19 mortality, while the effect of PM2.5 remains more uncertain.

Working paper

Boulieri A, Bennett JE, Blangiardo M, 2020, A Bayesian mixture modelling approach for public health surveillance, Biostatistics, Vol: 21, Pages: 369-383, ISSN: 1465-4644

Spatial monitoring of trends in health data plays an important part of public health surveillance. Most commonly, it is used to understand the etiology of a public health issue, to assess the impact of an intervention, or to provide detection of unusual behavior. In this article, we present a Bayesian mixture model for public health surveillance, which is able to provide estimates of the disease risk in space and time, and also to detect areas with unusual behavior. The model is designed to deal with a range of spatial and temporal patterns in the data, and with time series of different lengths. We carry out a simulation study to assess the performance of the model under different scenarios, and we compare it against a recently proposed Bayesian model for short time series. Finally, the proposed model is used for surveillance of road traffic accidents data in England over the years 2005–2015.

Journal article

NCD Risk Factor Collaboration NCD-RisC, 2020, Repositioning of the global epicentre of non-optimal cholesterol, Nature, Vol: 582, Pages: 73-77, ISSN: 0028-0836

High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular risk-changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and per

Journal article

Taddei C, Jackson R, Zhou B, Bixby H, Danaei G, Di Cesare M, Kuulasmaa K, Hajifathalian K, Bentham J, Bennett JE, Aekplakorn W, Cifkova R, Dallongeville J, De Bacquer D, Giampaoli S, Gudnason V, Khang Y-H, Laatikainen T, Mann JI, Marques-Vidal P, Mensah GA, Müller-Nurasyid M, Ninomiya T, Petkeviciene J, Rodríguez-Artalejo F, Servais J, Söderberg S, Stavreski B, Wilsgaard T, Zdrojewski T, Zhao D, Stevens GA, Savin S, Cowan MJ, Riley LM, Ezzati Met al., 2020, National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: an analysis of trends in Asian and Western countries, International Journal of Epidemiology, Vol: 49, Pages: 173-192, ISSN: 1464-3685

Background: Although high-density lipoprotein (HDL) and non-HDL cholesterol have opposite associations with coronary heart disease (CHD), multi-country reports of lipid trends only use total cholesterol (TC). Our aim was to compare trends in total, HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio in Asian and Western countries.Methods: We pooled 458 population-based studies with 82.1 million participants in 23 Asian and Western countries. We estimated changes in mean total, HDL and non-HDL cholesterol, and mean total-to-HDL cholesterol ratio by country, sex and age group.Results: Since ~1980, mean TC increased in Asian countries. In Japan and South Korea, TC rise was due to rising HDL cholesterol, which increased by up to 0.17 mmol/L per decade in Japanese women; in China, it was due to rising non-HDL cholesterol. TC declined in Western countries, except in Polish men. The decline was largest in Finland and Norway, ~0.4 mmol/Lper decade. The decline in TC in most Western countries was the net effect of an increase in HDL cholesterol and a decline in non-HDL cholesterol, with the HDL cholesterol increase largest in New Zealand and Switzerland. Mean total-to-HDL cholesterol ratio declined in Japan, South Korea and most Western countries, by as much as ~0.7 per decade in Swiss men (equivalent to ~26% decline in CHD risk per decade). The ratio increased in China. Conclusions: HDL cholesterol has risen and total-to-HDL cholesterol ratio has declined in many Western countries, Japan and South Korea, with only weak correlation to changes in TC or non-HDL cholesterol.

Journal article

Bentham J, Singh GM, Danaei G, Green R, Lin JK, Stevens GA, Farzadfar F, Bennett JE, Di Cesare M, Dangour AD, Ezzati Met al., 2020, Multidimensional characterization of global food supply from 1961 to 2013, Nature Food, Vol: 1, Pages: 70-75, ISSN: 2662-1355

Food systems are increasingly globalized and interdependent and diets around the world are changing. Characterising national food supplies and how they have changed can inform food policies that ensure national food security, support access to healthy diets and enhance environmental sustainability. Here, we analysed data for 171 countries on availability of 18 food groups from the United Nations Food and Agriculture Organization to identify and track 40 multi-dimensional food supply patterns from 1961 to 2013. Four predominant food group combinations were identified that explained almost 90% of cross-country variance in food supply: animal source and sugar; vegetable; starchy root and fruit; and seafood and oilcrops. South Korea, China and Taiwan experienced the largest changes in food supply over the past five decades, with animal source foods and sugar, vegetables, and seafood and oilcrops all becoming more abundant components of food supply. In contrast, in many Western countries, the supply of animal source foods and sugar declined. Meanwhile, there was remarkably little change in food supply in countries in the sub-Saharan Africa region. These changes have led to a partial global convergence in national supply of animal source foods and sugar, and a divergence in vegetables, and seafood and oilcrops. Our analysis has generated a novel characterisation of food supply that highlights the interdependence of multiple food types in national food systems. A better understanding of how these patterns have evolved and will continue to change is needed to support the delivery of healthy and sustainable food system policies.

Journal article

Parks RM, Bennett JE, Tamura-Wicks H, Kontis V, Toumi R, Danaei G, Ezzati Met al., 2020, Anomalously warm temperatures are associated with increased injury deaths, Nature Medicine, Vol: 26, Pages: 65-70, ISSN: 1078-8956

Temperatures which deviate from long-term local norm affect human health, and are projected to become more frequent as the global climate changes.1 There is limited data on how such anomalies affect deaths from injuries. Here, we used data on mortality and temperature over 38 years (1980-2017) in the contiguous USA and formulated a Bayesian spatio-temporal model to quantify how anomalous temperatures, defined as deviations of monthly temperature from the local average monthly temperature over the entire analysis period, affect deaths from unintentional (transport, falls and drownings) and intentional (assault and suicide) injuries, by age group and sex. We found that a 1.5°C anomalously warm year, as envisioned under the Paris Climate Agreement,2 would be associated with an estimated 1,601 (95% credible interval 1,430-37 1,776) additional injury deaths. 84% of these additional deaths would occur in males, mostly in adolescent to middle ages. These deaths would comprise of increases in deaths 39 from drownings, transport, assault and suicide, offset partly by a decline in deaths from falls in older ages. The findings demonstrate the need for targeted interventions against injuries during periods of anomalously high temperatures, especially as these episodes are likely to increase with global climate change.

Journal article

Bennett J, Tamura-Wicks H, Parks R, Burnett RT, Pope III CA, Bechle MJ, Marshall JD, Goodarz D, Ezzati Met al., 2019, Particulate matter air pollution and national and county life expectancy loss in the USA: a spatiotemporal analysis, PLoS Medicine, Vol: 16, ISSN: 1549-1277

Background Exposure to fine particulate matter pollution (PM2.5) is hazardous to health. Our aim was to directly estimate the health and longevity impacts of current PM2.5 concentrations, and the benefits of reductions from 1999 to 2015, nationally and at county level, for the entire contemporary population of the contiguous United States. Methods and findings We used vital registration and population data with information on sex, age, cause of death and county of residence. We used four Bayesian spatio-temporal models, with different adjustments for other determinants of mortality, to directly estimate mortality and life expectancy loss due to current PM2.5 pollution, and the benefits of reductions since 1999, nationally and by county. The covariates included in the adjusted models were per capita income; percentage of population whose family income is below the poverty threshold, who are of Black or African American race, who have graduated from high-school, who live in urban areas, and who are unemployed; cumulative smoking; and mean temperature and relative humidity. In the main model, which adjusted for these covariates and for unobserved county characteristics through the use of county random intercepts, PM2.5 pollution in excess of the lowest observed concentration (2.8 µg/m3) was responsible for an estimated 15,612 deaths (95% credible interval 13,248-17,945) in females and in 14,757 deaths (12,617-16,919) for males. These deaths would lower national life expectancy by an estimated 0.15 years (0.13-0.17) for women and 0.13 years (0.11-0.15) for men. The life expectancy loss due to PM2.5 was largest around Los Angeles and in some southern states, such as Arkansas, Oklahoma or Alabama. At any PM2.5 concentration, life expectancy loss was, on average, larger in counties with lower income than in wealthier counties. Reductions in PM2.5 since 1999 have lowered mortality in all but 14 counties where PM2.5 increased slightly. The main limitation of our study

Journal article

Bixby H, Bentham J, Zhou B, Di Cesare M, Paciorek CJ, Bennett JE, Taddei C, Stevens GA, Rodriguez-Martinez A, Carrillo-Larco RM, Khang Y-H, Soric M, Gregg E, Miranda JJ, Bhutta ZA, Savin S, Sophiea MK, Iurilli MLC, Solomon BD, Cowan MJ, Riley LM, Danaei G, Bovet P, Christa-Emandi A, Hambleton IR, Hayes AJ, Ikeda N, Kengne AP, Laxmaiah A, Li Y, McGarvey ST, Mostafa A, Neovius M, Starc G, Zainuddin AA, Ezzati Met al., 2019, Rising rural body-mass index is the main driver of the global obesity epidemic, Nature, Vol: 569, Pages: 260-264, ISSN: 0028-0836

Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities1,2. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity3,4,5,6. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.

Journal article

Suel E, Polak J, Bennett J, Ezzati Met al., 2019, Measuring social, environmental and health inequalities using deep learning and street imagery, Scientific Reports, Vol: 9, ISSN: 2045-2322

Cities are home to an increasing majority of the world’s population. Currently, it is difficult to track social, economic, environmental and health outcomes in cities with high spatial and temporal resolution, needed to evaluate policies regarding urban inequalities. We applied a deep learning approach to street images for measuring spatial distributions of income, education, unemployment, housing, living environment, health and crime. Our model predicts different outcomes directly from raw images without extracting intermediate user-defined features. To evaluate the performance of the approach, we first trained neural networks on a subset of images from London using ground truth data at high spatial resolution from official statistics. We then compared how trained networks separated the best-off from worst-off deciles for different outcomes in images not used in training. The best performance was achieved for quality of the living environment and mean income. Allocation was least successful for crime and self-reported health (but not objectively measured health). We also evaluated how networks trained in London predict outcomes three other major cities in the UK: Birmingham, Manchester, and Leeds. The transferability analysis showed that networks trained in London, fine-tuned with only 1% of images in other cities, achieved performances similar to ones from trained on data from target cities themselves. Our findings demonstrate that street imagery has the potential complement traditional survey-based and administrative data sources for high-resolution urban surveillance to measure inequalities and monitor the impacts of policies that aim to address them.

Journal article

Bennett J, Pearson-Stuttard J, Kontis V, Capewell S, Wolfe I, Ezzati Met al., 2018, Contributions of diseases and injuries to widening life expectancy inequalities in England from 2001 to 2016: population-based analysis of vital registration data, The Lancet Public Health, Vol: 3, Pages: e586-e597, ISSN: 2468-2667

BackgroundLife expectancy inequalities in England have increased steadily since the 1980s. Our aim was to investigate how much deaths from different diseases and injuries and at different ages have contributed to this rise to inform policies that aim to reduce health inequalities.MethodsWe used vital registration data from the Office for National Statistics on population and deaths in England, by underlying cause of death, from 2001 to 2016, stratified by sex, 5-year age group, and decile of the Index of Multiple Deprivation (based on the ranked scores of Lower Super Output Areas in England in 2015). We grouped the 7·65 million deaths by their assigned International Classification of Diseases (10th revision) codes to create categories of public health and clinical relevance. We used a Bayesian hierarchical model to obtain robust estimates of cause-specific death rates by sex, age group, year, and deprivation decile. We calculated life expectancy at birth by decile of deprivation and year using life-table methods. We calculated the contributions of deaths from each disease and injury, in each 5-year age group, to the life expectancy gap between the most deprived and affluent deciles using Arriaga's method.FindingsThe life expectancy gap between the most affluent and most deprived deciles increased from 6·1 years (95% credible interval 5·9–6·2) in 2001 to 7·9 years (7·7–8·1) in 2016 in females and from 9·0 years (8·8–9·2) to 9·7 years (9·6–9·9) in males. Since 2011, the rise in female life expectancy has stalled in the third, fourth, and fifth most deprived deciles and has reversed in the two most deprived deciles, declining by 0·24 years (0·10–0·37) in the most deprived and 0·16 years (0·02–0·29) in the second-most deprived by 2016. Death rates from every disease and at every age were higher in depriv

Journal article

Parks RM, Bennett J, Foreman K, Toumi R, Ezzati Met al., 2018, National and regional seasonal dynamics of all-cause and cause-specific mortality in the USA from 1980 to 2016, eLife, Vol: 7, ISSN: 2050-084X

In temperate climates, winter deaths exceed summer ones. However, there is limited information on the timing and the relative magnitudes of maximum and minimum mortality, by local climate, age group, sex and medical cause of death. We used geo-coded mortality data and wavelets to analyse the seasonality of mortality by age group and sex from 1980 to 2016 in the USA and its subnational climatic regions. Death rates in men and women ≥ 45 years peaked in December to February and were lowest in June to August, driven by cardiorespiratory diseases and injuries. In these ages, percent difference in death rates between peak and minimum months did not vary across climate regions, nor changed from 1980 to 2016. Under five years, seasonality of all-cause mortality largely disappeared after the 1990s. In adolescents and young adults, especially in males, death rates peaked in June/July and were lowest in December/January, driven by injury deaths.

Journal article

Bennett JE, Stevens GA, Mathers CD, Bonita R, Rehm J, Kruk M, Riley L, Dain K, Kengne A, Chalkidou K, Beagley J, Kishore S, Chen W, Saxena S, Bettcher D, Grove J, Beaglehole R, Ezzati Met al., 2018, NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4, Lancet, Vol: 392, Pages: 1072-1088, ISSN: 0140-6736

The third UN High-Level Meeting on Non-Communicable Diseases (NCDs) on Sept 27, 2018, will review national and global progress towards the prevention and control of NCDs, and provide an opportunity to renew, reinforce, and enhance commitments to reduce their burden. NCD Countdown 2030 is an independent collaboration to inform policies that aim to reduce the worldwide burden of NCDs, and to ensure accountability towards this aim. In 2016, an estimated 40·5 million (71%) of the 56·9 million worldwide deaths were from NCDs. Of these, an estimated 1·7 million (4% of NCD deaths) occurred in people younger than 30 years of age, 15·2 million (38%) in people aged between 30 years and 70 years, and 23·6 million (58%) in people aged 70 years and older. An estimated 32·2 million NCD deaths (80%) were due to cancers, cardiovascular diseases, chronic respiratory diseases, and diabetes, and another 8·3 million (20%) were from other NCDs. Women in 164 (88%) and men in 165 (89%) of 186 countries and territories had a higher probability of dying before 70 years of age from an NCD than from communicable, maternal, perinatal, and nutritional conditions combined. Globally, the lowest risks of NCD mortality in 2016 were seen in high-income countries in Asia-Pacific, western Europe, and Australasia, and in Canada. The highest risks of dying from NCDs were observed in low-income and middle-income countries, especially in sub-Saharan Africa, and, for men, in central Asia and eastern Europe. Sustainable Development Goal (SDG) target 3.4—a one-third reduction, relative to 2015 levels, in the probability of dying between 30 years and 70 years of age from cancers, cardiovascular diseases, chronic respiratory diseases, and diabetes by 2030—will be achieved in 35 countries (19%) for women, and 30 (16%) for men, if these countries maintain or surpass their 2010–2016 rate of decline in NCD mortality. Most of these are high-income c

Journal article

Ezzati M, Pearson-Stuttard J, Bennett J, Mathers CDet al., 2018, Acting on non-communicable diseases in low- and middle-income tropical countries, Nature, Vol: 559, Pages: 507-516, ISSN: 0028-0836

The classical portrayal of poor health in tropical countries is one of infections and parasites, contrasting with wealthy western countries, where unhealthy diet and behaviours cause non-communicable diseases (NCDs) like heart disease and cancer. Using international mortality data, we show that most NCDs cause more deaths at any age in low- and middle-income tropical countries than in high-income western countries. Causes of NCDs in low- and middle-income countries include poor nutrition and living environment, infections, insufficient regulation of tobacco and alcohol, and under-resourced and inaccessible healthcare. We identify a comprehensive set of actions across health, social, economic and environmental sectors that can confront NCDs in low- and middle-income tropical countries and reduce global health inequalities.

Journal article

NCD Risk Factor Collaboration NCD-RisC, 2017, Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults., Lancet, Vol: 390, Pages: 2627-2642, ISSN: 0140-6736

BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m(2) per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m(2) per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m(2) per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m(2) per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m(2) per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Tre

Journal article

Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati Met al., 2017, Projections of life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble, Lancet, Vol: 389, Pages: 1323-1335, ISSN: 1474-547X

Background: Projections of future mortality and life expectancy are needed to plan for health and social services and pensions. Our aim was to forecast national age-specific mortality and life expectancy using an approach that takes into account the uncertainty related to the choice of forecasting model.Methods: We developed an ensemble of 21 forecasting models, all of which probabilistically contributed towards the final projections. We applied this approach to forecast age-specific mortality to 2030 in 35 industrialised countries with high-quality vital statistics data. We used age-specific death rates to calculate life expectancy at birth and at age 65 years, and probability of dying before 70 years of age, with life-table models.Results: Life expectancy is projected to increase in all 35 countries with a probability of at least 65% for women and 85% for men. There is a 90% probability that life expectancy at birth among South Korean women in 2030 will be higher than 86.7 years, the same as the highest life expectancy in 2012, and a 57% probability that it will be higher than 90 years. Female life expectancy in South Korea is followed by those in France, Spain and Japan. For men, there is > 95% probability that life expectancy in South Korea, Australia and Switzerland will surpass 80 years in 2030, and 27% that it will surpass 85 years. The USA, Japan, Sweden, Greece, Macedonia and Serbia have some of the lowest projected life expectancy gains for both men and women. The female life expectancy advantage over men is likely to shrink by 2030 in every country except Mexico, where female life expectancy is predicted to increase more than male life expectancy, and in Chile, France, Greece, and Romania where the two sexes will see similar gains. More than half of the projected gains in life expectancy at birth in women will be due to enhanced longevity above 65 years of age. Conclusions: There is more than a 50% probability that by 2030, national female life expecta

Journal article

Bentham J, Di Cesare M, Stevens GA, Zhou B, Bixby H, Cowan M, Fortunato L, Bennett J, Danaei G, Hajifathalian K, Lu Y, Riley LM, Laxmaiah A, Kontis V, Paciorek CJ, Riboli E, Ezzati M, Chan Q, Elliott P, Gunter M, Hihtaniemi IT, Murphy N, Norat T, Riboli E, Vineis P, NCD Risk Factor Collaboration NCD-RisCet al., 2016, A century of trends in adult human height, eLife, Vol: 5, ISSN: 2050-084X

Being taller is associated with enhanced longevity, and higher education and earnings. We reanalysed 1472 population-based studies, with measurement of height on more than 18.6 million participants to estimate mean height for people born between 1896 and 1996 in 200 countries. The largest gain in adult height over the past century has occurred in South Korean women and Iranian men, who became 20.2 cm (95% credible interval 17.5–22.7) and 16.5 cm (13.3–19.7) taller, respectively. In contrast, there was little change in adult height in some sub-Saharan African countries and in South Asia over the century of analysis. The tallest people over these 100 years are men born in the Netherlands in the last quarter of 20th century, whose average heights surpassed 182.5 cm, and the shortest were women born in Guatemala in 1896 (140.3 cm; 135.8–144.8). The height differential between the tallest and shortest populations was 19-20 cm a century ago, and has remained the same for women and increased for men a century later despite substantial changes in the ranking of countries.

Journal article

Arku RE, Bennett JE, Castro MC, Agyeman-Duah K, Mintah SE, Ware JH, Nyarko P, Spengler JD, Agyei-Mensah S, Ezzati Met al., 2016, Geographical Inequalities and Social and Environmental Risk Factors for Under-Five Mortality in Ghana in 2000 and 2010: Bayesian Spatial Analysis of Census Data, PLOS Medicine, Vol: 13, ISSN: 1549-1277

BackgroundUnder-five mortality is declining in Ghana and many other countries. Very few studies have measured under-five mortality—and its social and environmental risk factors—at fine spatial resolutions, which is relevant for policy purposes. Our aim was to estimate under-five mortality and its social and environmental risk factors at the district level in Ghana.Methods and FindingsWe used 10% random samples of Ghana’s 2000 and 2010 National Population and Housing Censuses. We applied indirect demographic methods and a Bayesian spatial model to the information on total number of children ever born and children surviving to estimate under-five mortality (probability of dying by 5 y of age, 5q0) for each of Ghana’s 110 districts. We also used the census data to estimate the distributions of households or persons in each district in terms of fuel used for cooking, sanitation facility, drinking water source, and parental education. Median district 5q0 declined from 99 deaths per 1,000 live births in 2000 to 70 in 2010. The decline ranged from <5% in some northern districts, where 5q0 had been higher in 2000, to >40% in southern districts, where it had been lower in 2000, exacerbating existing inequalities. Primary education increased in men and women, and more households had access to improved water and sanitation and cleaner cooking fuels. Higher use of liquefied petroleum gas for cooking was associated with lower 5q0 in multivariate analysis.ConclusionsUnder-five mortality has declined in all of Ghana’s districts, but the cross-district inequality in mortality has increased. There is a need for additional data, including on healthcare, and additional environmental and socioeconomic measurements, to understand the reasons for the variations in mortality levels and trends.

Journal article

Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, Bixby H, Cowan MJ, Ali MK, Taddei C, Lo W-C, Reis-Santos B, Stevens GA, Riley LM, Miranda JJ, Bjerregaard P, Rivera JA, Fouad HM, Ma G, Mbanya JCN, McGarvey ST, Mohan V, Onat A, Ramachandran A, Ben Romdhane H, Paciorek CJ, Bennett JE, Ezzati M, Abdeen ZA, Kadir KA, Abu-Rmeileh NM, Acosta-Cazares B, Adams R, Aekplakorn W, Aguilar-Salinas CA, Agyemang C, Ahmadvand A, Al-Othman AR, Alkerwi A, Amouyel P, Amuzu A, Andersen LB, Anderssen SA, Anjana RM, Aounallah-Skhiri H, Aris T, Arlappa N, Arveiler D, Assah FK, Avdicova M, Azizi F, Balakrishna N, Bandosz P, Barbagallo CM, Barcelo A, Batieha AM, Baur LA, Ben Romdhane H, Benet M, Bernabe-Ortiz A, Bharadwaj S, Bhargava SK, Bi Y, Bjerregaard P, Bjertness E, Bjertness MB, Bjorkelund C, Blokstra A, Bo S, Boehm BO, Boissonnet CP, Bovet P, Brajkovich I, Breckenkamp J, Brenner H, Brewster LM, Brian GR, Bruno G, Bugge A, Cabrera de Leon A, Can G, Candido APC, Capuano V, Carlsson AC, Carvalho MJ, Casanueva FF, Casas J-P, Caserta CA, Castetbon K, Chamukuttan S, Chaturvedi N, Chen C-J, Chen F, Chen S, Cheng C-Y, Chetrit A, Chiou S-T, Cho Y, Chudek J, Cifkova R, Claessens F, Concin H, Cooper C, Cooper R, Costanzo S, Cottel D, Cowell C, Crujeiras AB, D'Arrigo G, Dallongeville J, Dankner R, Dauchet L, de Gaetano G, De Henauw S, Deepa M, Dehghan A, Deschamps V, Dhana K, Di Castelnuovo AF, Djalalinia S, Doua K, Drygas W, Du Y, Dzerve V, Egbagbe EE, Eggertsen R, El Ati J, Elosua R, Erasmus RT, Erem C, Ergor G, Eriksen L, Escobedo-de la Pena J, Fall CH, Farzadfar F, Felix-Redondo FJ, Ferguson TS, Fernandez-Berges D, Ferrari M, Ferreccio C, Feskens EJM, Finn JD, Foeger B, Foo LH, Forslund A-S, Fouad HM, Francis DK, Franco MDC, Franco OH, Frontera G, Furusawa T, Gaciong Z, Garnett SP, Gaspoz J-M, Gasull M, Gates L, Geleijnse JM, Ghasemian A, Ghimire A, Giampaoli S, Gianfagna F, Giovannelli J, Giwercman A, Gonzalez Gross M, Gonzalez Rivas JP, Bonet Gorbea M, Gottrand F, Grafnetteet al., 2016, Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants, Lancet, Vol: 387, Pages: 1513-1530, ISSN: 1474-547X

BackgroundOne of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes.MethodsWe pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue.FindingsWe used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalenc

Journal article

Di Cesare M, Bentham J, Stevens GA, Zhou B, Danaei G, Lu Y, Bixby H, Cowan MJ, Riley LM, Hajifathalian K, Fortunato L, Taddei C, Bennett JE, Ikeda N, Khang Y-H, Kyobutungi C, Laxmaiah A, Li Y, Lin H-H, Miranda JJ, Mostafa A, Turley ML, Paciorek CJ, Gunter M, Ezzati M, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta-Cazares B, Adams R, Aekplakorn W, Aguilar-Salinas CA, Ahmadvand A, Ahrens W, Ali MM, Alkerwi A, Alvarez-Pedrerol M, Aly E, Amouyel P, Amuzu A, Andersen LB, Anderssen SA, Andrade DS, Anjana RM, Aounallah-Skhiri H, Ariansen I, Aris T, Arlappa N, Arveiler D, Assah FK, Avdicova M, Azizi F, Babu BV, Balakrishna N, Bandosz P, Banegas JR, Barbagallo CM, Barcelo A, Barkat A, Barros MV, Bata I, Batieha AM, Batista RL, Baur LA, Beaglehole R, Ben Romdhane H, Benet M, Bernabe-Ortiz A, Bernotiene G, Bettiol H, Bhagyalaxmi A, Bharadwaj S, Bhargava SK, Bhatti Z, Bhutta ZA, Bi H, Bi Y, Bjerregaard P, Bjertness E, Bjertness MB, Bjorkelund C, Blake M, Blokstra A, Bo S, Bobak M, Boddy LM, Boehm BO, Boeing H, Boissonnet CP, Bongard V, Bovet P, Braeckman L, Bragt MCE, Brajkovich I, Branca F, Breckenkamp J, Brenner H, Brewster LM, Brian GR, Bruno G, Bueno-de-Mesquita HBA, Bugge A, Burns C, Cabrera de Leon A, Cacciottolo J, Cama T, Cameron C, Camolas J, Can G, Candido APC, Capuano V, Cardoso VC, Carvalho MJ, Casanueva FF, Casas J-P, Caserta CA, Castetbon K, Chamukuttan S, Chan AW, Chan Q, Chaturvedi HK, Chaturvedi N, Chen C-J, Chen F, Chen H, Chen S, Chen Z, Cheng C-Y, Chetrit A, Chiolero A, Chiou S-T, Chirita-Emandi A, Cho Y, Christensen K, Chudek J, Cifkova R, Claessens F, Clays E, Concin H, Cooper C, Cooper R, Coppinger TC, Costanzo S, Cottel D, Cowell C, Craig CL, Crujeiras AB, D'Arrigo G, d'Orsi E, Dallongeville J, Damasceno A, Damsgaard CT, Danaei G, Dankner R, Dauchet L, De Backer G, De Bacquer D, de Gaetano G, De Henauw S, De Smedt D, Deepa M, Deev AD, Dehghan A, Delisle H, Delpeuch F, Dhana K, Di Castelnuovo AF, Dias-da-Costa JS, Diaz A, Djalalinia S, Do HTP, Dobson AJ, Doet al., 2016, Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants, Lancet, Vol: 387, Pages: 1377-1396, ISSN: 1474-547X

BackgroundUnderweight and severe and morbid obesity are associated with highly elevated risks of adverse health outcomes. We estimated trends in mean body-mass index (BMI), which characterises its population distribution, and in the prevalences of a complete set of BMI categories for adults in all countries.MethodsWe analysed, with use of a consistent protocol, population-based studies that had measured height and weight in adults aged 18 years and older. We applied a Bayesian hierarchical model to these data to estimate trends from 1975 to 2014 in mean BMI and in the prevalences of BMI categories (<18·5 kg/m2 [underweight], 18·5 kg/m2 to <20 kg/m2, 20 kg/m2 to <25 kg/m2, 25 kg/m2 to <30 kg/m2, 30 kg/m2 to <35 kg/m2, 35 kg/m2 to <40 kg/m2, ≥40 kg/m2 [morbid obesity]), by sex in 200 countries and territories, organised in 21 regions. We calculated the posterior probability of meeting the target of halting by 2025 the rise in obesity at its 2010 levels, if post-2000 trends continue.FindingsWe used 1698 population-based data sources, with more than 19·2 million adult participants (9·9 million men and 9·3 million women) in 186 of 200 countries for which estimates were made. Global age-standardised mean BMI increased from 21·7 kg/m2 (95% credible interval 21·3–22·1) in 1975 to 24·2 kg/m2 (24·0–24·4) in 2014 in men, and from 22·1 kg/m2 (21·7–22·5) in 1975 to 24·4 kg/m2 (24·2–24·6) in 2014 in women. Regional mean BMIs in 2014 for men ranged from 21·4 kg/m2 in central Africa and south Asia to 29·2 kg/m2 (28·6–29·8) in Polynesia and Micronesia; for women the range was from 21·8 kg/m2 (21·4–22·3) in south Asia to 32·2 kg/m2 (31·5–32·8) in Polynesia and Micronesia. Over these four decades, age-standardised global prevalence of un

Journal article

Ezzati M, Bennett JE, Black RE, Bhutta ZA, Fawzi Wet al., 2016, Vitamin A deficiency: policy implications of estimates of trends and mortality in children, Lancet Global Health, Vol: 4, Pages: E22-E22, ISSN: 2214-109X

Journal article

Bennett JE, Li G, Kontis V, Foreman K, Ezzati Met al., 2015, Future inequalities in life expectancy in England and Wales Reply, Lancet, Vol: 386, Pages: 2391-2392, ISSN: 0140-6736

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00157491&limit=30&person=true&page=2&respub-action=search.html