Imperial College London

DrVincenzoLibri

Faculty of MedicineNational Heart & Lung Institute

Honorary Clinical Lecturer
 
 
 
//

Contact

 

+44 (0)20 3313 1677v.libri

 
 
//

Location

 

NIHR Imperial Clinical Research FacilityICTEM buildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

111 results found

Liu X, Munro APS, Wright A, Feng S, Janani L, Aley PK, Babbage G, Baker J, Baxter D, Bawa T, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Fox L, Qureshi E, Goodman AL, Green CA, Haughney J, Hicks A, Jones CE, Kanji N, van der Klaauw AA, Libri V, Llewelyn MJ, Mansfield R, Maallah M, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Belhadef HT, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Saralaya D, Sharma S, Sheridan R, Stokes M, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Cornelius V, Snape MD, Faust SN, COV-BOOST study groupet al., 2023, Persistence of immune responses after heterologous and homologous third COVID-19 vaccine dose schedules in the UK: eight-month analyses of the COV-BOOST trial, Journal of Infection, Vol: 87, Pages: 18-26, ISSN: 0163-4453

BACKGROUND: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose in June 2021. Monovalent messenger RNA (mRNA) COVID-19 vaccines were subsequently widely used for the third and fourth-dose vaccination campaigns in high-income countries. Real-world vaccine effectiveness against symptomatic infections following third doses declined during the Omicron wave. This report compares the immunogenicity and kinetics of responses to third doses of vaccines from day (D) 28 to D242 following third doses in seven study arms. METHODS: The trial initially included ten experimental vaccine arms (seven full-dose, three half-dose) delivered at three groups of six sites. Participants in each site group were randomised to three or four experimental vaccines, or MenACWY control. The trial was stratified such that half of participants had previously received two primary doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) and half had received two doses of BNT162b2 (Pfizer-BioNtech, hereafter referred to as BNT). The D242 follow-up was done in seven arms (five full-dose, two half-dose). The BNT vaccine was used as the reference as it was the most commonly deployed third-dose vaccine in clinical practice in high-income countries. The primary analysis was conducted using all randomised and baseline seronegative participants who were SARS-CoV-2 naïve during the study and who had not received a further COVID-19 vaccine for any reason since third dose randomisation. RESULTS: Among the 817 participants included in this report, the median age was 72 years (IQR: 55-78) with 50.7% being female. The decay rates of anti-spike IgG between vaccines are different among both populations who received initial doses of ChAd/ChAd and BNT/BNT. In the population that previously received ChAd/ChAd, mRNA vaccines had the highest titre at D242 following their vaccine dose although Ad26.COV2.S (Janssen; hereafter ref

Journal article

Carr EJ, Wu MY, Gahir J, Harvey R, Townsley H, Bailey C, Fowler AS, Dowgier G, Hobbs A, Herman L, Ragno M, Miah M, Bawumia P, Smith C, Miranda M, Mears HV, Adams L, Haptipoglu E, O'Reilly N, Warchal S, Sawyer C, Ambrose K, Kelly G, Beale R, Papineni P, Corrah T, Gilson R, Gamblin S, Kassiotis G, Libri V, Williams B, Swanton C, Gandhi S, Lv Bauer D, Wall EC, Crick COVID Serology Consortiumet al., 2023, Neutralising immunity to omicron sublineages BQ.1.1, XBB, and XBB.1.5 in healthy adults is boosted by bivalent BA.1-containing mRNA vaccination and previous Omicron infection., Lancet Infect Dis, Vol: 23, Pages: 781-784

Journal article

Turner P, 2023, Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study - a single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines, Journal of Infection, Vol: 86, Pages: 574-583, ISSN: 0163-4453

BackgroundHeterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development.MethodsCom-COV2 was a single-blinded trial in which adults ≥ 50 years, previously immunised with single dose ‘ChAd’ (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or ‘BNT’ (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8–12 weeks later with either the homologous vaccine, or ‘Mod’ (mRNA-1273, Spikevax, Moderna) or ‘NVX’ (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration.FindingsIn April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N = 540, 45% female) or BNT (N = 532, 39% female) as part of the national vaccination programme.In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95% CI (confidence interval): 8.2, 11.5) at D28 to 6.2 (95% CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95% CI:2.5,3.5) to 2.4 (95% CI:1.9, 3.0).In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The adjusted GMR (aGMR) for BNT/Mod compared with BNT/BNT increased from 1.36 (95% CI: 1.17, 1.58) at D28 to 1.52 (95

Journal article

Payne T, Appleby M, Buckley E, van Gelder LMA, Mullish BH, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeil A, Libri V, Moll S, Marchesi JR, Taylor R, Su L, Mazzà C, Jenkins TM, Foltynie T, Bandmann Oet al., 2023, A double-blind, randomized, placebo-controlled trial of ursodeoxycholic Acid (UDCA) in Parkinson's disease, Movement Disorders, Vol: 38, Pages: 1493-1502, ISSN: 0885-3185

Background:Rescue of mitochondrial function is a promising neuroprotective strategy for Parkinson's disease (PD). Ursodeoxycholic acid (UDCA) has shown considerable promise as a mitochondrial rescue agent across a range of preclinical in vitro and in vivo models of PD.Objectives:To investigate the safety and tolerability of high-dose UDCA in PD and determine midbrain target engagement.Methods:The UP (UDCA in PD) study was a phase II, randomized, double-blind, placebo-controlled trial of UDCA (30 mg/kg daily, 2:1 randomization UDCA vs. placebo) in 30 participants with PD for 48 weeks. The primary outcome was safety and tolerability. Secondary outcomes included 31-phosphorus magnetic resonance spectroscopy (31P-MRS) to explore target engagement of UDCA in PD midbrain and assessment of motor progression, applying both the Movement Disorder Society Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III) and objective, motion sensor-based quantification of gait impairment.Results:UDCA was safe and well tolerated, and only mild transient gastrointestinal adverse events were more frequent in the UDCA treatment group. Midbrain 31P-MRS demonstrated an increase in both Gibbs free energy and inorganic phosphate levels in the UDCA treatment group compared to placebo, reflecting improved ATP hydrolysis. Sensor-based gait analysis indicated a possible improvement of cadence (steps per minute) and other gait parameters in the UDCA group compared to placebo. In contrast, subjective assessment applying the MDS-UPDRS-III failed to detect a difference between treatment groups.Conclusions:High-dose UDCA is safe and well tolerated in early PD. Larger trials are needed to further evaluate the disease-modifying effect of UDCA in PD.

Journal article

Liu X, Munro AP, Feng S, Janani L, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dejnirattisai W, Dodd K, Enever Y, Qureshi E, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kwok J, Libri V, Llewelyn MJ, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Serafimova T, Saralaya D, Screaton GR, Sharma S, Sheridan R, Sturdy A, Supasa P, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Cornelius V, Snape MD, Faust SN, COV-BOOST study groupet al., 2023, Corrigendum to "Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial" [J Infect 84(6) (2022) 795-813, 5511]., J Infect, Vol: 86, Pages: 540-541

Journal article

Szubert AJ, Pollock KM, Cheeseman HM, Alagaratnam J, Bern H, Bird O, Boffito M, Byrne R, Cole T, Cosgrove CA, Faust SN, Fidler S, Galiza E, Hassanin H, Kalyan M, Libri V, McFarlane LR, Milinkovic A, O'Hara J, Owen DR, Owens D, Pacurar M, Rampling T, Skene S, Winston A, Woolley J, Yim YTN, Dunn DT, McCormack S, Shattock RJ, COVAC 1 Study Teamet al., 2023, COVAC1 phase 2a expanded safety and immunogenicity study of a self-amplifying RNA vaccine against SARS-CoV-2., EClinicalMedicine, Vol: 56, Pages: 1-13, ISSN: 2589-5370

BACKGROUND: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is well tolerated and immunogenic in SARS-CoV-2 seronegative and seropositive individuals aged 18-75. METHODS: A phase 2a expanded safety and immunogenicity study of a saRNA SARS-CoV-2 vaccine candidate LNP-nCoVsaRNA, was conducted at participating centres in the UK between 10th August 2020 and 30th July 2021. Participants received 1 μg then 10 μg of LNP-nCoVsaRNA, ∼14 weeks apart. Solicited adverse events (AEs) were collected for one week post-each vaccine, and unsolicited AEs throughout. Binding and neutralisating anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, and SARS-CoV-2 pseudoneutralisation assay. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). FINDINGS: 216 healthy individuals (median age 51 years) received 1.0 μg followed by 10.0 μg of the vaccine. 28/216 participants were either known to have previous SARS-CoV2 infection and/or were positive for anti-Spike (S) IgG at baseline. Reactogenicity was as expected based on the reactions following licensed COVID-19 vaccines, and there were no serious AEs related to vaccination. 80% of baseline SARS-CoV-2 naïve individuals (147/183) seroconverted two weeks post second immunization, irrespective of age (18-75); 56% (102/183) had detectable neutralising antibodies. Almost all (28/31) SARS-CoV-2 positive individuals had increased S IgG binding antibodies following their first 1.0 μg dose with a ≥0.5log10 increase in 71% (22/31). INTERPRETATION: Encapsulated saRNA was well tolerated and immunogenic in adults aged 18-75 years. Seroconversion rates in antigen naïve were higher than those reported in our dose-ranging study. Further work is required to determine if this difference is related to a longer dosing interval (14 vs. 4 weeks) or dosing with 1.0 μg followed by 10.0 μg. Boosting of S IgG an

Journal article

Mentzer AJ, O'Connor D, Bibi S, Chelysheva IL, Clutterbuck EA, Demissie T, Dinesh T, Edwards NM, Felle S, Feng SC, Flaxman A, Karp-Tatham E, Li G, Liu XJ, Marchevsky N, Godfrey L, Makinson RK, Bull MO, Fowler JN, Alamad B, Malinauskas T, Chong A, Sanders K, Shaw R, Voysey M, Snape MD, Pollard AJ, Lambe T, Knight JCet al., 2023, Human leukocyte antigen alleles associate with COVID-19 vaccine immunogenicity and risk of breakthrough infection, NATURE MEDICINE, Vol: 29, Pages: 147-+, ISSN: 1078-8956

Journal article

Shaw RH, Liu X, Stuart ASV, Greenland M, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, Dejnirattisai W, Dinesh T, Faust SN, Ferreira DM, Finn A, Green CA, Hallis B, Heath PT, Hill H, Lambe T, Lazarus R, Libri V, Long F, Mujadidi YF, Plested EL, Morey ER, Provstgaard-Morys S, Ramasamy MN, Ramsay M, Read RC, Robinson H, Screaton GR, Singh N, Turner DPJ, Turner PJ, Vichos I, Walker LL, White R, Nguyen-Van-Tam JS, Snape MD, Com-COV Study Groupet al., 2022, Effect of priming interval on reactogenicity, peak immunological response, and waning after homologous and heterologous COVID-19 vaccine schedules: exploratory analyses of Com-COV, a randomised control trial, The Lancet Respiratory Medicine, Vol: 10, Pages: 1049-1060, ISSN: 2213-2600

BACKGROUND: Priming COVID-19 vaccine schedules have been deployed at variable intervals globally, which might influence immune persistence and the relative importance of third-dose booster programmes. Here, we report exploratory analyses from the Com-COV trial, assessing the effect of 4-week versus 12-week priming intervals on reactogenicity and the persistence of immune response up to 6 months after homologous and heterologous priming schedules using the vaccines BNT162b2 (tozinameran, Pfizer/BioNTech) and ChAdOx1 nCoV-19 (AstraZeneca). METHODS: Com-COV was a participant-masked, randomised immunogenicity trial. For these exploratory analyses, we used the trial's general cohort, in which adults aged 50 years or older were randomly assigned to four homologous and four heterologous vaccine schedules using BNT162b2 and ChAdOx1 nCoV-19 with 4-week or 12-week priming intervals (eight groups in total). Immunogenicity analyses were done on the intention-to-treat (ITT) population, comprising participants with no evidence of SARS-CoV-2 infection at baseline or for the trial duration, to assess the effect of priming interval on humoral and cellular immune response 28 days and 6 months post-second dose, in addition to the effects on reactogenicity and safety. The Com-COV trial is registered with the ISRCTN registry, 69254139 (EudraCT 2020-005085-33). FINDINGS: Between Feb 11 and 26, 2021, 730 participants were randomly assigned in the general cohort, with 77-89 per group in the ITT analysis. At 28 days and 6 months post-second dose, the geometric mean concentration of anti-SARS-CoV-2 spike IgG was significantly higher in the 12-week interval groups than in the 4-week groups for homologous schedules. In heterologous schedule groups, we observed a significant difference between intervals only for the BNT162b2-ChAdOx1 nCoV-19 group at 28 days. Pseudotyped virus neutralisation titres were significantly higher in all 12-week interval groups versus 4-week groups, 28 days post-second

Journal article

Munro APS, Feng S, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Qureshi E, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kanji N, Libri V, Llewelyn MJ, McGregor AC, Maallah M, Minassian AM, Moore P, Mughal M, Mujadidi YF, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Bawa T, Saralaya D, Sharma S, Sheridan R, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Snape MD, Liu X, Faust SN, COV-BOOST study groupet al., 2022, Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial, Lancet Infectious Diseases, Vol: 22, Pages: 1131-1141, ISSN: 1473-3099

BACKGROUND: Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19. METHODS: The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 μg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 μg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing. FINDINGS: Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70

Journal article

Liu X, Munro APS, Feng S, Janani L, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dejnirattisai W, Dodd K, Enever Y, Qureshi E, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kwok J, Libri V, Llewelyn MJ, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Holliday K, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Serafimova T, Saralaya D, Screaton GR, Sharma S, Sheridan R, Sturdy A, Supasa P, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Lambe T, Nguyen-Van-Tam JS, Cornelius V, Snape MD, Faust SN, COV-BOOST study groupet al., 2022, Persistence of immunogenicity after seven COVID-19 vaccines given as third dose boosters following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK: Three month analyses of the COV-BOOST trial, Journal of Infection, Vol: 84, Pages: 795-813, ISSN: 0163-4453

OBJECTIVES: To evaluate the persistence of immunogenicity three months after third dose boosters. METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of seven COVID-19 vaccines used as a third booster dose. The analysis was conducted using all randomised participants who were SARS-CoV-2 naïve during the study. RESULTS: Amongst the 2883 participants randomised, there were 2422 SARS-CoV-2 naïve participants until D84 visit included in the analysis with median age of 70 (IQR: 30-94) years. In the participants who had two initial doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd), schedules using mRNA vaccines as third dose have the highest anti-spike IgG at D84 (e.g. geometric mean concentration of 8674 ELU/ml (95% CI: 7461-10,085) following ChAd/ChAd/BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT)). However, in people who had two initial doses of BNT there was no significant difference at D84 in people given ChAd versus BNT (geometric mean ratio (GMR) of 0.95 (95%CI: 0.78, 1.15). Also, people given Ad26.COV2.S (Janssen; hereafter referred to as Ad26) as a third dose had significantly higher anti-spike IgG at D84 than BNT (GMR of 1.20, 95%CI: 1.01,1.43). Responses at D84 between people who received BNT (15 μg) or BNT (30 μg) after ChAd/ChAd or BNT/BNT were similar, with anti-spike IgG GMRs of half-BNT (15 μg) versus BNT (30 μg) ranging between 0.74-0.86. The decay rate of cellular responses were similar between all the vaccine schedules and doses. CONCLUSIONS: 84 days after a third dose of COVID-19 vaccine the decay rates of humoral response were different between vaccines. Adenoviral vector vaccine anti-spike IgG concentrations at D84 following BNT/BNT initial doses were similar to or even higher than for a three dose (BNT/BNT/BNT) schedule. Half dose BNT immune responses were similar to full dose responses. While high antibody tires are desirable in situations of high transmission of new

Journal article

Fisher BA, Veenith T, Slade D, Gaskell C, Rowland M, Whitehouse T, Scriven J, Parekh D, Balasubramaniam MS, Cooke G, Morley N, Gabriel Z, Wise MP, Porter J, McShane H, Ho L-P, Newsome PN, Rowe A, Sharpe R, Thickett DR, Bion J, Gates S, Richards D, Kearns P, CATALYST investigatorset al., 2022, Namilumab or infliximab compared with standard of care in hospitalised patients with COVID-19 (CATALYST): a randomised, multicentre, multi-arm, multistage, open-label, adaptive, phase 2, proof-of-concept trial., The Lancet Respiratory Medicine, Vol: 10, Pages: 255-266, ISSN: 2213-2600

BACKGROUND: Dysregulated inflammation is associated with poor outcomes in COVID-19. We aimed to assess the efficacy of namilumab (a granulocyte-macrophage colony stimulating factor inhibitor) and infliximab (a tumour necrosis factor inhibitor) in hospitalised patients with COVID-19, to prioritise agents for phase 3 trials. METHODS: In this randomised, multicentre, multi-arm, multistage, parallel-group, open-label, adaptive, phase 2, proof-of-concept trial (CATALYST), we recruited patients (aged ≥16 years) admitted to hospital with COVID-19 pneumonia and C-reactive protein (CRP) concentrations of 40 mg/L or greater, at nine hospitals in the UK. Participants were randomly assigned with equal probability to usual care or usual care plus a single intravenous dose of namilumab (150 mg) or infliximab (5 mg/kg). Randomisation was stratified by care location within the hospital (ward vs intensive care unit [ICU]). Patients and investigators were not masked to treatment allocation. The primary endpoint was improvement in inflammation, measured by CRP concentration over time, analysed using Bayesian multilevel models. This trial is now complete and is registered with ISRCTN, 40580903. FINDINGS: Between June 15, 2020, and Feb 18, 2021, we screened 299 patients and 146 were enrolled and randomly assigned to usual care (n=54), namilumab (n=57), or infliximab (n=35). For the primary outcome, 45 patients in the usual care group were compared with 52 in the namilumab group, and 29 in the usual care group were compared with 28 in the infliximab group. The probabilities that the interventions were superior to usual care alone in reducing CRP concentration over time were 97% for namilumab and 15% for infliximab; the point estimates for treatment-time interactions were -0·09 (95% CI -0·19 to 0·00) for namilumab and 0·06 (-0·05 to 0·17) for infliximab. 134 adverse events occurred in 30 (55%) of 55 patients in the namilumab group compared with

Journal article

Wu M, Wall EC, Carr EJ, Harvey R, Townsley H, Mears HV, Adams L, Kjaer S, Kelly G, Warchal S, Sawyer C, Kavanagh C, Queval CJ, Ngai Y, Hatipoglu E, Ambrose K, Hindmarsh S, Beale R, Gamblin S, Howell M, Kassiotis G, Libri V, Williams B, Gandhi S, Swanton C, Bauer DLVet al., 2022, Three-dose vaccination elicits neutralising antibodies against omicron, LANCET, Vol: 399, Pages: 715-717, ISSN: 0140-6736

Journal article

Pollock KM, Cheeseman HM, Szubert AJ, Libri V, Boffito M, Owen D, Bern H, O'Hara J, McFarlane LR, Lemm N-M, McKay PF, Rampling T, Yim YTN, Milinkovic A, Kingsley C, Cole T, Fagerbrink S, Aban M, Tanaka M, Mehdipour S, Robbins A, Budd W, Faust SN, Hassanin H, Cosgrove CA, Winston A, Fidler S, Dunn DT, McCormack S, Shattock RJ, COVAC1 study Groupet al., 2022, Safety and immunogenicity of a self-amplifying RNA vaccine against COVID-19: COVAC1, a phase I, dose-ranging trial, EClinicalMedicine, Vol: 44, ISSN: 2589-5370

Background: Lipid nanoparticle (LNP) encapsulated self-amplifying RNA (saRNA) is a novel technology formulated as a low dose vaccine against COVID-19. Methods: A phase I first-in-human dose-ranging trial of a saRNA COVID-19 vaccine candidate LNP-nCoVsaRNA, was conducted at Imperial Clinical Research Facility, and participating centres in London, UK, between 19th June to 28th October 2020. Participants received two intramuscular (IM) injections of LNP-nCoVsaRNA at six different dose levels, 0.1-10.0μg, given four weeks apart. An open-label dose escalation was followed by a dose evaluation. Solicited adverse events (AEs) were collected for one week from enrolment, with follow-up at regular intervals (1-8 weeks). The binding and neutralisation capacity of anti-SARS-CoV-2 antibody raised in participant sera was measured by means of an anti-Spike (S) IgG ELISA, immunoblot, SARS-CoV-2 pseudoneutralisation and wild type neutralisation assays. (The trial is registered: ISRCTN17072692, EudraCT 2020-001646-20). Findings: 192 healthy individuals with no history or serological evidence of COVID-19, aged 18-45 years were enrolled. The vaccine was well tolerated with no serious adverse events related to vaccination. Seroconversion at week six whether measured by ELISA or immunoblot was related to dose (both p<0.001), ranging from 8% (3/39; 0.1μg) to 61% (14/23; 10.0μg) in ELISA and 46% (18/39; 0.3μg) to 87% (20/23; 5.0μg and 10.0μg) in a post-hoc immunoblot assay. Geometric mean (GM) anti-S IgG concentrations ranged from 74 (95% CI, 45-119) at 0.1μg to 1023 (468-2236) ng/mL at 5.0μg (p<0.001) and was not higher at 10.0μg. Neutralisation of SARS-CoV-2 by participant sera was measurable in 15% (6/39; 0.1μg) to 48% (11/23; 5.0μg) depending on dose level received. Interpretation: Encapsulated saRNA is safe for clinical development, is immunogenic at low dose levels but failed to induce 100% seroconversion. Modifications to optimis

Journal article

Lazarus R, Baos S, Cappel-Porter H, Carson-Stevens A, Clout M, Culliford L, Emmett SR, Garstang J, Gbadamoshi L, Hallis B, Harris RA, Hutton D, Jacobsen N, Joyce K, Kaminski R, Libri V, Middleditch A, McCullagh L, Moran E, Phillipson A, Price E, Ryan J, Thirard R, Todd R, Snape MD, Tucker D, Williams RL, Nguyen-Van-Tam JS, Finn A, Rogers CA, ComfluCOV Trial Groupet al., 2021, Safety and immunogenicity of concomitant administration of COVID-19 vaccines (ChAdOx1 or BNT162b2) with seasonal influenza vaccines in adults in the UK (ComFluCOV): a multicentre, randomised, controlled, phase 4 trial., Lancet, Vol: 398, Pages: 2277-2287

BACKGROUND: Concomitant administration of COVID-19 and influenza vaccines could reduce burden on health-care systems. We aimed to assess the safety of concomitant administration of ChAdOx1 or BNT162b2 plus an age-appropriate influenza vaccine. METHODS: In this multicentre, randomised, controlled, phase 4 trial, adults in receipt of a single dose of ChAdOx1 or BNT162b2 were enrolled at 12 UK sites and randomly assigned (1:1) to receive concomitant administration of either an age-appropriate influenza vaccine or placebo alongside their second dose of COVID-19 vaccine. 3 weeks later the group who received placebo received the influenza vaccine, and vice versa. Participants were followed up for 6 weeks. The influenza vaccines were three seasonal, inactivated vaccines (trivalent, MF59C adjuvanted or a cellular or recombinant quadrivalent vaccine). Participants and investigators were masked to the allocation. The primary endpoint was one or more participant-reported solicited systemic reactions in the 7 days after first trial vaccination(s), with a difference of less than 25% considered non-inferior. Analyses were done on an intention-to-treat basis. Local and unsolicited systemic reactions and humoral responses were also assessed. The trial is registered with ISRCTN, ISRCTN14391248. FINDINGS: Between April 1 and June 26, 2021, 679 participants were recruited to one of six cohorts, as follows: 129 ChAdOx1 plus cellular quadrivalent influenza vaccine, 139 BNT162b2 plus cellular quadrivalent influenza vaccine, 146 ChAdOx1 plus MF59C adjuvanted, trivalent influenza vaccine, 79 BNT162b2 plus MF59C adjuvanted, trivalent influenza vaccine, 128 ChAdOx1 plus recombinant quadrivalent influenza vaccine, and 58 BNT162b2 plus recombinant quadrivalent influenza vaccine. 340 participants were assigned to concomitant administration of influenza and a second dose of COVID-19 vaccine at day 0 followed by placebo at day 21, and 339 participants were randomly assigned to concomitant adminis

Journal article

Stuart ASV, Shaw RH, Liu X, Greenland M, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, Darton T, Dinesh T, Duncan CJA, England A, Faust SN, Ferreira DM, Finn A, Goodman AL, Green CA, Hallis B, Heath PT, Hill H, Horsington BM, Lambe T, Lazarus R, Libri V, Lillie PJ, Mujadidi YF, Payne R, Plested EL, Provstgaard-Morys S, Ramasamy MN, Ramsay M, Read RC, Robinson H, Screaton GR, Singh N, Turner DPJ, Turner PJ, Vichos I, White R, Nguyen-Van-Tam JS, Snape MD, Com-COV2 Study Groupet al., 2021, Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial, The Lancet, Vol: 399, Pages: 36-49, ISSN: 0140-6736

BACKGROUND: Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS: Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS: Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8&middo

Journal article

Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Gokani K, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kwok J, Libri V, Llewelyn MJ, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Murira J, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Salkeld J, Saralaya D, Sharma S, Sheridan R, Sturdy A, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Nguyen-Van-Tam JS, Snape MD, Liu X, Faust SN, COV-BOOST study groupet al., 2021, Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial, The Lancet, Vol: 398, ISSN: 0140-6736

BACKGROUND: Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS: COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY) control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS: Between June 1 and June

Journal article

Swanson PA, Padilla M, Hoyland W, McGlinchey K, Fields PA, Bibi S, Faust SN, McDermott AB, Lambe T, Pollard AJ, Durham NM, Kelly EJ, AstraZenecaOxfordVRC Study Groupet al., 2021, AZD1222/ChAdOx1 nCoV-19 vaccination induces a polyfunctional spike protein-specific TH1 response with a diverse TCR repertoire., Sci Transl Med, Vol: 13

AZD1222 (ChAdOx1 nCoV-19), a replication-deficient simian adenovirus–vectored vaccine, has demonstrated safety, efficacy, and immunogenicity against coronavirus disease 2019 in clinical trials and real-world studies. We characterized CD4+ and CD8+ T cell responses induced by AZD1222 vaccination in peripheral blood mononuclear cells from 296 unique vaccine recipients aged 18 to 85 years who enrolled in the phase 2/3 COV002 trial. Total spike protein–specific CD4+ T cell helper type 1 (TH1) and CD8+ T cell responses were increased in AZD1222-vaccinated adults of all ages after two doses of AZD1222. CD4+ TH2 responses after AZD1222 vaccination were not detected. Furthermore, AZD1222-specific TH1 and CD8+ T cells both displayed a high degree of polyfunctionality in all adult age groups. T cell receptor β (TCRβ) sequences from vaccinated participants mapped against TCR sequences known to react to SARS-CoV-2 revealed substantial breadth and depth across the SARS-CoV-2 spike protein for both AZD1222-induced CD4+ and CD8+ T cell responses. Overall, AZD1222 vaccination induced a polyfunctional TH1-dominated T cell response, with broad CD4+ and CD8+ T cell coverage across the SARS-CoV-2 spike protein.

Journal article

Feng S, Phillips DJ, White T, Sayal H, Aley PK, Bibi S, Dold C, Fuskova M, Gilbert SC, Hirsch I, Humphries HE, Jepson B, Kelly EJ, Plested E, Shoemaker K, Thomas KM, Vekemans J, Villafana TL, Lambe T, Pollard AJ, Voysey M, Adlou S, Allen L, Angus B, Anslow R, Asselin M-C, Baker N, Baker P, Barlow T, Beveridge A, Bewley KR, Brown P, Brunt E, Buttigieg KR, Camara S, Charlton S, Chiplin E, Cicconi P, Clutterbuck EA, Collins AM, Coombes NS, Clemens SAC, Davison M, Demissie T, Dinesh T, Douglas AD, Duncan CJA, Emary KRW, Ewer KJ, Felle S, Ferreira DM, Finn A, Folegatti PM, Fothergill R, Fraser S, Garlant H, Gatcombe L, Godwin KJ, Goodman AL, Green CA, Hallis B, Hart TC, Heath PT, Hill H, Hill AVS, Jenkin D, Kasanyinga M, Kerridge S, Knight C, Leung S, Libri V, Lillie PJ, Marinou S, McGlashan J, McGregor AC, McInroy L, Minassian AM, Mujadidi YF, Penn EJ, Petropoulos CJ, Pollock KM, Proud PC, Provstgaard-Morys S, Rajapaska D, Ramasamy MN, Sanders K, Shaik I, Singh N, Smith A, Snape MD, Song R, Shrestha S, Sutherland RK, Thomson EC, Turner DPJ, Webb-Bridges A, Wrin T, Williams CJet al., 2021, Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection, Nature Medicine, Vol: 27, Pages: 2032-2040, ISSN: 1078-8956

The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF50) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines.

Journal article

Liu X, Shaw RH, Stuart ASV, Greenland M, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, Dinesh T, England A, Faust SN, Ferreira DM, Finn A, Green CA, Hallis B, Heath PT, Hill H, Lambe T, Lazarus R, Libri V, Long F, Mujadidi YF, Plested EL, Provstgaard-Morys S, Ramasamy MN, Ramsay M, Read RC, Robinson H, Singh N, Turner DPJ, Turner PJ, Walker LL, White R, Nguyen-Van-Tam JS, Snape MD, Com-COV Study Groupet al., 2021, Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial., The Lancet, Vol: 398, Pages: 856-869, ISSN: 0140-6736

BACKGROUND: Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer-BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. METHODS: Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative a

Journal article

Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, Daniels R, Adams L, Hobson P, Hatipoglu E, Ngai Y, Hussain S, Ambrose K, Hindmarsh S, Beale R, Riddell A, Gamblin S, Howell M, Kassiotis G, Libri V, Williams B, Swanton C, Gandhi S, Bauer DLVet al., 2021, AZD1222-induced neutralising antibody activity against SARS-CoV-2 Delta VOC, LANCET, Vol: 398, Pages: 207-209, ISSN: 0140-6736

Journal article

Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C, Daniels R, Hobson P, Hatipoglu E, Ngai Y, Hussain S, Nicod J, Goldstone R, Ambrose K, Hindmarsh S, Beale R, Riddell A, Gamblin S, Howell M, Kassiotis G, Libri V, Williams B, Swanton C, Gandhi S, Bauer DLVet al., 2021, Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination, LANCET, Vol: 397, Pages: 2331-2333, ISSN: 0140-6736

Journal article

Emary KRW, Golubchik T, Aley PK, Ariani C, Angus B, Bibi S, Blane B, Bonsall D, Cicconi P, Charlton S, Clutterbuck EA, Collins AM, Cox T, Darton TC, Dold C, Douglas AD, Duncan CJA, Ewer KJ, Flaxman AL, Faust SN, Ferreira DM, Feng S, Finn A, Folegatti PM, Fuskova M, Galiza E, Goodman AL, Green CM, Green CA, Greenland M, Hallis B, Heath PT, Hay J, Hill HC, Jenkin D, Kerridge S, Lazarus R, Libri V, Lillie PJ, Ludden C, Marchevsky NG, Minassian AM, McGregor AC, Mujadidi YF, Phillips DJ, Plested E, Pollock KM, Robinson H, Smith A, Song R, Snape MD, Sutherland RK, Thomson EC, Toshner M, Turner DPJ, Vekemans J, Villafana TL, Williams CJ, Hill AVS, Lambe T, Gilbert SC, Voysey M, Ramasamy MN, Pollard AJet al., 2021, Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial, The Lancet, Vol: 397, Pages: 1351-1362, ISSN: 0140-6736

BackgroundA new variant of SARS-CoV-2, B.1.1.7, emerged as the dominant cause of COVID-19 disease in the UK from November, 2020. We report a post-hoc analysis of the efficacy of the adenoviral vector vaccine, ChAdOx1 nCoV-19 (AZD1222), against this variant.MethodsVolunteers (aged ≥18 years) who were enrolled in phase 2/3 vaccine efficacy studies in the UK, and who were randomly assigned (1:1) to receive ChAdOx1 nCoV-19 or a meningococcal conjugate control (MenACWY) vaccine, provided upper airway swabs on a weekly basis and also if they developed symptoms of COVID-19 disease (a cough, a fever of 37·8°C or higher, shortness of breath, anosmia, or ageusia). Swabs were tested by nucleic acid amplification test (NAAT) for SARS-CoV-2 and positive samples were sequenced through the COVID-19 Genomics UK consortium. Neutralising antibody responses were measured using a live-virus microneutralisation assay against the B.1.1.7 lineage and a canonical non-B.1.1.7 lineage (Victoria). The efficacy analysis included symptomatic COVID-19 in seronegative participants with a NAAT positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to vaccine received. Vaccine efficacy was calculated as 1 − relative risk (ChAdOx1 nCoV-19 vs MenACWY groups) derived from a robust Poisson regression model. This study is continuing and is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137.FindingsParticipants in efficacy cohorts were recruited between May 31 and Nov 13, 2020, and received booster doses between Aug 3 and Dec 30, 2020. Of 8534 participants in the primary efficacy cohort, 6636 (78%) were aged 18–55 years and 5065 (59%) were female. Between Oct 1, 2020, and Jan 14, 2021, 520 participants developed SARS-CoV-2 infection. 1466 NAAT positive nose and throat swabs were collected from these participants during the trial. Of these, 401 swabs from 311 participants were successfully sequenced. L

Journal article

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, Bibi S, Briner C, Cicconi P, Clutterbuck EA, Collins AM, Cutland CL, Darton TC, Dheda K, Dold C, Duncan CJA, Emary KRW, Ewer KJ, Flaxman A, Fairlie L, Faust SN, Feng S, Ferreira DM, Finn A, Galiza E, Goodman AL, Green CM, Green CA, Greenland M, Hill C, Hill HC, Hirsch I, Izu A, Jenkin D, Joe CCD, Kerridge S, Koen A, Kwatra G, Lazarus R, Libri V, Lillie PJ, Marchevsky NG, Marshall RP, Mendes AVA, Milan EP, Minassian AM, McGregor A, Mujadidi YF, Nana A, Padayachee SD, Phillips DJ, Pittella A, Plested E, Pollock KM, Ramasamy MN, Ritchie AJ, Robinson H, Schwarzbold AV, Smith A, Song R, Snape MD, Sprinz E, Sutherland RK, Thomson EC, Torok ME, Toshner M, Turner DPJ, Vekemans J, Villafana TL, White T, Williams CJ, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJet al., 2021, Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials, The Lancet, Vol: 397, Pages: 881-891, ISSN: 0140-6736

BackgroundThe ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4–12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered.MethodsWe present data from three single-blind randomised controlled trials—one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)—and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked

Journal article

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, Bibi S, Briner C, Cicconi P, Collins AM, Colin-Jones R, Cutland CL, Darton TC, Dheda K, Duncan CJA, Emary KRW, Ewer KJ, Fairlie L, Faust SN, Feng S, Ferreira DM, Finn A, Goodman AL, Green CM, Green CA, Heath PT, Hill C, Hill H, Hirsch I, Hodgson SHC, Izu A, Jackson S, Jenkin D, Joe CCD, Kerridge S, Koen A, Kwatra G, Lazarus R, Lawrie AM, Lelliott A, Libri V, Lillie PJ, Mallory R, Mendes AVA, Milan EP, Minassian AM, McGregor A, Morrison H, Mujadidi YF, Nana A, O'Reilly PJ, Padayachee SD, Pittella A, Plested E, Pollock KM, Ramasamy MN, Rhead S, Schwarzbold AV, Singh N, Smith A, Song R, Snape MD, Sprinz E, Sutherland RK, Tarrant R, Thomson EC, Török ME, Toshner M, Turner DPJ, Vekemans J, Villafana TL, Watson MEE, Williams CJ, Douglas AD, Hill AVS, Lambe T, Gilbert SC, Pollard AJ, Oxford COVID Vaccine Trial Groupet al., 2021, Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK, The Lancet, Vol: 397, Pages: 99-111, ISSN: 0140-6736

BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pin

Journal article

Mullin S, Smith L, Lee K, D'Souza G, Woodgate P, Elflein J, Hällqvist J, Toffoli M, Streeter A, Hosking J, Heywood WE, Khengar R, Campbell P, Hehir J, Cable S, Mills K, Zetterberg H, Limousin P, Libri V, Foltynie T, Schapira AHVet al., 2020, Ambroxol for the Treatment of Patients With Parkinson Disease With and Without Glucocerebrosidase Gene Mutations: A Nonrandomized, Noncontrolled Trial., JAMA Neurol, Vol: 77, Pages: 427-434

IMPORTANCE: Mutations of the glucocerebrosidase gene, GBA1 (OMIM 606463), are the most important risk factor for Parkinson disease (PD). In vitro and in vivo studies have reported that ambroxol increases β-glucocerebrosidase (GCase) enzyme activity and reduces α-synuclein levels. These observations support a potential role for ambroxol therapy in modifying a relevant pathogenetic pathway in PD. OBJECTIVE: To assess safety, tolerability, cerebrospinal fluid (CSF) penetration, and target engagement of ambroxol therapy with GCase in patients with PD with and without GBA1 mutations. INTERVENTIONS: An escalating dose of oral ambroxol to 1.26 g per day. DESIGN, SETTING, AND PARTICIPANTS: This single-center open-label noncontrolled clinical trial was conducted between January 11, 2017, and April 25, 2018, at the Leonard Wolfson Experimental Neuroscience Centre, a dedicated clinical research facility and part of the University College London Queen Square Institute of Neurology in London, United Kingdom. Participants were recruited from established databases at the Royal Free London Hospital and National Hospital for Neurology and Neurosurgery in London. Twenty-four patients with moderate PD were evaluated for eligibility, and 23 entered the study. Of those, 18 patients completed the study; 1 patient was excluded (failed lumbar puncture), and 4 patients withdrew (predominantly lumbar puncture-related complications). All data analyses were performed from November 1 to December 14, 2018. MAIN OUTCOMES AND MEASURES: Primary outcomes at 186 days were the detection of ambroxol in the CSF and a change in CSF GCase activity. RESULTS: Of the 18 participants (15 men [83.3%]; mean [SD] age, 60.2 [9.7] years) who completed the study, 17 (8 with GBA1 mutations and 9 without GBA1 mutations) were included in the primary analysis. Between days 0 and 186, a 156-ng/mL increase in the level of ambroxol in CSF (lower 95% confidence limit, 129 ng/mL; P < .001) was ob

Journal article

Reetz K, Hilgers R-D, Isfort S, Dohmen M, Didszun C, Fedosov K, Kistermann J, Mariotti C, Durr A, Boesch S, Klopstock T, Rodríguez de Rivera Garrido FJ, Schöls L, Klockgether T, Pandolfo M, Korinthenberg R, Lavin P, Molenberghs G, Libri V, Giunti P, Festenstein R, Schulz JB, EFACTS or NICOFA study groupet al., 2019, Protocol of a randomized, double-blind, placebo-controlled, parallel-group, multicentre study of the efficacy and safety of nicotinamide in patients with Friedreich ataxia (NICOFA), Neurological Research and Practice, Vol: 1, ISSN: 2524-3489

Introduction: Currently, no treatment that delays with the progression of Friedreich ataxia is available. In the majority of patients Friedreich ataxia is caused by homozygous pathological expansion of GAA repeats in the first intron of the FXN gene. Nicotinamide acts as a histone deacetylase inhibitor. Dose escalation studies have shown, that short term treatment with dosages of up to 4 g/day increase the expression of FXN mRNA and frataxin protein up to the levels of asymptomatic heterozygous gene carriers. The long-term effects and the effects on clinical endpoints, activities of daily living and quality of life are unknown. Methods: The aim of the NICOFA study is to investigate the efficacy and safety of nicotinamide for the treatment of Friedreich ataxia over 24 months. An open-label dose adjustment wash-in period with nicotinamide (phase A: weeks 1-4) to the individually highest tolerated dose of 2-4 g nicotinamide/day will be followed by a 2 (nicotinamide group): 1 (placebo group) randomization (phase B: weeks 5-104). In the nicotinamide group, patients will continue with their individually highest tolerated dose between 2 and 4 g/d per os once daily and the placebo group patients will be receiving matching placebo. Safety assessments will consist of monitoring and recording of all adverse events and serious adverse events, regular monitoring of haematology, blood chemistry and urine values, regular measurement of vital signs and the performance of physical examinations including cardiological signs. The primary outcome is the change in the Scale for the Assessment and Rating of Ataxia (SARA) over time as compared with placebo in patients with Friedreich ataxia based on the linear mixed effect model (LMEM) model. Secondary endpoints are measures of quality of life, functional motor and cognitive measures, clinician's and patient's global impression-change scales as well as the up-regulation of the frataxin protein level, safety and

Journal article

Mauricio R, Benn C, Davis J, Dawson G, Dawson LA, Evans A, Fox N, Gallacher J, Hutton M, Isaac J, Jones DNC, Jones L, Lalli G, Libri V, Lovestone S, Moody C, Noble W, Perry H, Pickett J, Reynolds D, Ritchie C, Rohrer JD, Routledge C, Rowe J, Snyder H, Spires-Jones T, Swartz J, Truyen L, Whiting Pet al., 2019, Tackling gaps in developing life-changing treatments for dementia, ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, Vol: 5, Pages: 241-253

Journal article

Owen DRJ, Fan J, Campioli E, Venugopal S, Midzak A, Daly E, Harlay A, Issop L, Libri V, Kalogiannopoulou D, Oliver E, Gallego-Colon E, Colasanti A, Huson L, Rabiner EA, Suppiah P, Essagian C, Matthews PM, Papadopoulos Vet al., 2017, TSPO mutations in rats and a human polymorphism impair the rate of steroid synthesis, Biochemical Journal, Vol: 474, Pages: 3985-3999, ISSN: 1470-8728

The 18 kDa translocator protein (TSPO) is a ubiquitous conserved outer mitochondrial membrane protein implicated in numerous cell and tissue functions, including steroid hormone biosynthesis, respiration, cell proliferation, and apoptosis. TSPO binds with high affinity to cholesterol and numerous compounds, is expressed at high levels in steroid-synthesizing tissues, and mediates cholesterol import into mitochondria, which is the rate-limiting step in steroid formation. In humans, the rs6971 polymorphism on the TSPO gene leads to an amino acid substitution in the fifth transmembrane loop of the protein, which is where the cholesterol-binding domain of TSPO is located, and this polymorphism has been associated with anxiety-related disorders. However, recent knockout mouse models have provided inconsistent conclusions of whether TSPO is directly involved in steroid synthesis. In this report, we show that TSPO deletion mutations in rat and its corresponding rs6971 polymorphism in humans alter adrenocorticotropic hormone-induced plasma corticosteroid concentrations. Rat tissues examined show increased cholesteryl ester accumulation, and neurosteroid formation was undetectable in homozygous rats. These results also support a role for TSPO ligands in diseases with steroid-dependent stress and anxiety elements.

Journal article

quinn K, Traboni C, Dily Penchala S, bouliotis G, doyle N, libri V, Khoo S, ashby D, weber J, Nicosia A, Cortese R, Pessi A, Winston Aet al., 2017, A first-in-human study of the novel HIV-fusion inhibitor C34-PEG4-Chol., Scientific Reports, Vol: 7, ISSN: 2045-2322

Abstract:Long-acting injectable antiretroviral (LA-ARV) drugs with low toxicity profiles and propensity for drug-drug interactions are a goal for future ARV regimens. C34-PEG4-Chol is a novel cholesterol tagged LA HIV-fusion-inhibitor (FI). We assessed pre-clinical toxicology and first-in-human administration of C34-PEG4-Chol. Pre-clinical toxicology was conducted in 2 species. HIV-positive men were randomised to a single subcutaneous dose of C34-PEG4-Chol at incrementing doses or placebo. Detailed clinical (including injection site reaction (ISR) grading), plasma pharmacokinetic (time-to-minimum-effective-concentration (MEC, 25ng/mL) and pharmacodynamic (plasma HIV RNA) parameters were assessed. In both mice and dogs, no-observed-adverse effect level (NOAEL) was observed at a 12 mg/kg/dose after two weeks. Of 5 men enrolled, 3 received active drug (10mg, 10mg and 20mg). In 2 individuals grade 3 ISR occurred and the study was halted. Both ISR emerged within 12 hours of active drug dosing. No systemic toxicities were observed. The time-to-MEC was > 72 and >96 hours after 10 and 20 mg dose, respectively, and mean change in HIV RNA was -0.9 log10 copies/mL. These human pharmacodynamic and pharmacokinetic data, although limited to 3 subjects, of C34-PEG-4-Chol suggest continuing evaluation of this agent as a LA-ARV. However, alternative administration routes must be explored.

Journal article

Quinn K, Bouliotis G, Doyle N, Winston A, Ashby D, Weber J, Libri V, Amara A, Back D, Penchala SD, Khoo S, Nelson M, Jones R, Cortese R, Pessi Aet al., 2016, A first-in-human study, in HIV-positive men, of the novel HIV-fusion inhibitor C34-PEG4-Chol, 22nd Annual Conference of the British HIV Association (BHIVA), Publisher: Wiley, Pages: 18-18, ISSN: 1464-2662

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00588600&limit=30&person=true