Imperial College London

DrVictoriaSalem

Faculty of EngineeringDepartment of Bioengineering

Clinical Senior Lecturer in Diabetes and Endocrinology
 
 
 
//

Contact

 

v.salem

 
 
//

Location

 

Commonwealth BuildingHammersmith Campus

//

Summary

 

Publications

Publication Type
Year
to

81 results found

Jones B, Fang Z, Chen S, Manchanda Y, Bitsi S, Pickford P, David A, Shchepinova MM, Corrêa Jr IR, Hodson DJ, Broichhagen J, Tate EW, Reimann F, Salem V, Rutter GA, Tan T, Bloom SR, Tomas Aet al., 2020, Ligand-specific factors influencing GLP-1 receptor post-endocytic trafficking and degradation in pancreatic beta cells, International Journal of Molecular Sciences, Vol: 212, Pages: 1-24, ISSN: 1422-0067

The glucagon-like peptide-1 receptor (GLP-1R) is an important regulator of blood glucose homeostasis. Ligand-specific differences in membrane trafficking of the GLP-1R influence its signalling properties and therapeutic potential in type 2 diabetes. Here, we have evaluated how different factors combine to control the post-endocytic trafficking of GLP-1R to recycling versus degradative pathways. Experiments were performed in primary islet cells, INS-1 832/3 clonal beta cells and HEK293 cells, using biorthogonal labelling of GLP-1R to determine its localisation and degradation after treatment with GLP-1, exendin-4 and several further GLP-1R agonist peptides. We also characterised the effect of a rare GLP1R coding variant, T149M, and the role of endosomal peptidase endothelin-converting enzyme-1 (ECE-1), in GLP1R trafficking. Our data reveal how treatment with GLP-1 versus exendin-4 is associated with preferential GLP-1R targeting towards a recycling pathway. GLP-1, but not exendin-4, is a substrate for ECE-1, and the resultant propensity to intra-endosomal degradation, in conjunction with differences in binding affinity, contributes to alterations in GLP-1R trafficking behaviours and degradation. The T149M GLP-1R variant shows reduced signalling and internalisation responses, which is likely to be due to disruption of the cytoplasmic region that couples to intracellular effectors. These observations provide insights into how ligand- and genotype-specific factors can influence GLP-1R trafficking.

Journal article

Hopkins M, Andrews R, Salem V, Taylor R, le Roux CW, Robertson E, Burns Eet al., 2020, Improving understanding of type 2 diabetes remission: research recommendations from Diabetes UK's 2019 remission workshop, DIABETIC MEDICINE, Vol: 37, Pages: 1944-1950, ISSN: 0742-3071

Journal article

Hameed S, Salem V, Alessimii H, Scholtz S, Dar O, Miras AD, Meeran K, Bloom SR, Ahmed AR, Purkayastha S, Chahal H, Tan Tet al., 2020, Imperial Satiety Protocol: A new non-surgical weight-loss programme, delivered in a health care setting, produces improved clinical outcomes for people with obesity, Diabetes, Obesity and Metabolism: a journal of pharmacology and therapeutics, Vol: 23, Pages: 270-275, ISSN: 1462-8902

‘Imperial Satiety Protocol’ (I-SatPro) is a new multifaceted approach to weight loss for people with obesity (PwO), encompassing dietary advice, time-restricted eating, physical activity and coaching to support behaviour change. Participants (n = 84) attended fortnightly I-SatPro group sessions for 30 weeks, with 70% of participants completing. On completion at 30 weeks, the mean weight loss was 15.2 ± 1.1 kg (13.2 ± 0.8% from baseline, P < .0001), which was maintained to 52 weeks (16.6 ± 1.5 kg, 14.1 ± 1.2%, P < .0001). Weight loss was not associated with reduced energy expenditure. In participants with type 2 diabetes and pre-diabetes (n = 16), glycated haemoglobin fell from 50 to 43 mmol/mol (P < .01). Systolic blood pressure fell by 12 mmHg (P < .0001). Triglycerides fell by 0.37 mmol/L (P < .01) and high-density lipoprotein rose by 0.08 mmol/L (P < .01). Short Form-36 (SF-36) functioning and wellbeing scores increased in all domains post I-SatPro intervention. For selected PwO, I-SatPro delivers clinically meaningful weight loss, and the potential for long-term health and wellbeing improvements.

Journal article

Muniangi-Muhitu H, Akalestou E, Salem V, Misra S, Oliver NS, Rutter GAet al., 2020, Covid-19 and diabetes: a complex bidirectional relationship, Frontiers in Endocrinology, Vol: 11, ISSN: 1664-2392

Covid-19 is a recently-emerged infectious disease caused by the novel severe acute respiratory syndrome coronavirus SARS-CoV2. SARS-CoV2 differs from previous coronavirus infections (SARS and MERS) due to its high infectivity (reproduction value, R0, typically 2-4) and pre- or asymptomatic transmission, properties that have contributed to the current global Covid-19 pandemic. Identified risk factors for disease severity and death from SARS-Cov2 infection include older age, male sex, diabetes, obesity and hypertension. The reasons for these associations are still largely obscure. Evidence is also emerging that SARS-CoV2 infection exacerbates the underlying pathophysiology of hyperglycemia in people with diabetes. Here, we discuss potential mechanisms through which diabetes may affect the risk of more severe outcomes in Covid-19 and, additionally, how diabetic emergencies and longer term pathology may be aggravated by infection with the virus. We consider roles for the immune system, the observed phenomenon of microangiopathy in severe Covid-19 infection and the potential for direct viral toxicity on metabolically-relevant tissues including pancreatic beta cells and targets of insulin action.

Journal article

Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung ACH, Sessions RB, Alpy F, Kong APS, Benke PI, Torta F, Keong Teo AK, Leclerc I, Solimena M, Wigley DB, Rutter GAet al., 2020, The type 2 diabetes gene product STARD10 is a phosphoinositide-binding protein that controls insulin secretory granule biogenesis, Molecular Metabolism, Vol: 40, ISSN: 2212-8778

OBJECTIVE: Risk alleles for type 2 diabetes at the STARD10 locus are associated with lowered STARD10 expression in the β-cell, impaired glucose-induced insulin secretion, and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids and thus the pathways through which STARD10 regulates β-cell function are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and the role of the protein in controlling proinsulin processing and insulin granule biogenesis and maturation. METHODS: We used isolated islets from mice deleted selectively in the β-cell for Stard10 (βStard10KO) and performed electron microscopy, pulse-chase, RNA sequencing, and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in the INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay was performed on purified STARD10 protein. RESULTS: βStard10KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of "rod-like" dense cores. Correspondingly, basal secretion of proinsulin was increased versus wild-type islets. The solution of the crystal structure of STARD10 to 2.3 Å resolution revealed a binding pocket capable of accommodating polyphosphoinositides, and STARD10 was shown to bind to inositides phosphorylated at the 3' position. Lipidomic analysis of âStard10KO islets demonstrated changes in phosphatidylinositol levels, and the inositol lipid kinase PIP4K2C was identified as a STARD10 binding partner. Also consistent with roles for STARD10 in phosphoinositide signalling, the phosphoinositide-binding proteins Pirt and Synaptotagmin 1 were amongst the differentially expressed genes in βStard10KO islets. CONCLUSION: Our data indicate that STARD10 binds to, and may transp

Journal article

Rutter GA, Ninov N, Salem V, Hodson DJet al., 2020, Comment on Satin et al. "Take Me To Your Leader": An Electrophysiological Appraisal of the Role of Hub Cells in Pancreatic Islets. Diabetes 2020;69:830-836, DIABETES, Vol: 69, Pages: E10-E11, ISSN: 0012-1797

Journal article

Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Leclerc I, Salem V, Rutter GAet al., 2020, Metabolic surgery recovers Ca<SUP>2+</SUP>dynamics across pancreatic islets in obese mice, 56th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), Publisher: SPRINGER, Pages: S114-S114, ISSN: 0012-186X

Conference paper

Ali UT, Suba K, Bitsi S, Alonso AM, Patel Y, Leclerc I, Rutter GA, Rothery S, Tomas A, Salem Vet al., 2020, Improving islet transplantation success by increasing expression of the epidermal growth factor receptor (EGFR), Publisher: WILEY, Pages: 36-36, ISSN: 0742-3071

Conference paper

Suba K, Patel Y, Alonso AM, Ukwuoma M, Kalogianni V, Leclerc I, Owen B, Rutter GA, Bloom SR, Salem Vet al., 2020, Clinical care and other categories posters: Hypoglycaemia, Publisher: WILEY, Pages: 25-25, ISSN: 0742-3071

Conference paper

Hartley O, Hameed S, Reddy M, Tharakan G, Salem Vet al., 2020, An audit of the management of hyperosmolar diabetic emergencies on an acute medical unit, Publisher: WILEY, Pages: 71-71, ISSN: 0742-3071

Conference paper

Izzi-Engbeaya C, Distaso W, Amin A, Yang W, Idowu O, Kenkre JS, Shah RJ, Woin E, Shi C, Alavi N, Bedri H, Brady N, Blackburn S, Leczycka M, Patel S, Sokol E, Toke-Bjolgerud E, Qayum A, Abdel-Malek M, Hope DCD, Oliver NS, Bravis V, Misra S, Tan TM, Hill N, Salem Vet al., 2020, Severe COVID-19 and Diabetes - A Retrospective Cohort Study from Three London Teaching Hospitals

<jats:title>ABSTRACT</jats:title><jats:p>Patients with diabetes mellitus admitted to hospital with COVID-19 caused by infection with the novel coronavirus (SARS-CoV-2) have poorer outcomes. However, the drivers for this are not fully elucidated. We performed a retrospective cohort study, including detailed pre-hospital and presenting clinical and biochemical factors of 889 patients diagnosed with COVID-19 in three constituent hospitals of a large London NHS Trust. 62% of patients with severe COVID-19 were of non-White ethnic backgrounds and the prevalence of diabetes was 38%. 323 (36%) patients met the primary outcome of death or admission to the intensive care unit (ICU) within 30 days of diagnosis. Male gender, advancing age and the Clinical Frailty Scale, an established measure of multimorbidity, independently predicted poor outcomes on multivariate analysis. Diabetes did not confer an independent risk for adverse outcomes in COVID-19, although patients with diabetes and ischaemic heart disease were at particular risk. Additional risk factors which significantly and independently associated with poorer outcomes in patients with diabetes were age, male gender and lower platelet count. Antiplatelet medication was associated with a lower risk of death/ICU admission and should be evaluated in randomised clinical trials amongst high risk patient groups.</jats:p>

Journal article

Salem V, Ali U, Suba K, Bitsi S, Lopes T, Alonso AM, Patel YS, Leclerc I, Owen B, Rutter GA, Rothery SM, Tomas Aet al., 2020, Upregulation of Pancreatic Islet EGF Receptor Improves Beta-Cell Identity and In Vivo Vascularisation in a Directly Observed Transplant Model, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Suba K, Patel YS, Alonso AM, Scott R, Minnion JS, Leclerc I, Owen B, Distaso W, Tan TM, Murphy K, Bloom S, Rutter GA, Salem Vet al., 2020, Chronic Administration of a Long-Acting Glucagon Analogue Results in Enhanced Insulin Secretory Activity in a Directly-Observed Murine Model, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Akalestou E, Suba K, Noriega LL, Chabosseau PL, Leclerc I, Salem V, Rutter GAet al., 2020, Bariatric Surgery Improves Ca2+Dynamics across Pancreatic Islets In Vivo, 80th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Akalestou E, Suba K, Lopez-Noriega L, Georgiadou E, Chabosseau P, Leclerc I, Salem V, Rutter GAet al., 2020, Intravital imaging of islet Ca<sup>2+</sup> dynamics reveals enhanced β cell connectivity after bariatric surgery in mice

<jats:title>Abstract</jats:title><jats:p>Bariatric surgery improves both insulin sensitivity and secretion in type 2 diabetes. However, these changes are difficult to monitor directly and independently. In particular, the degree and the time course over which surgery impacts β cell function, versus mass, have been difficult to establish. In this study, we investigated the effect of bariatric surgery on β cell function <jats:italic>in vivo</jats:italic> by imaging Ca<jats:sup>2+</jats:sup> dynamics prospectively and at the single cell level in islets engrafted into the anterior eye chamber. Islets expressing GCaMP6f selectively in the β cell were transplanted into obese male hyperglycaemic mice that were then subjected to either vertical sleeve gastrectomy (VSG) or sham surgery. Imaged <jats:italic>in vivo</jats:italic> in the eye, VSG improved coordinated Ca<jats:sup>2+</jats:sup> activity, with 90% of islets observed exhibiting enhanced Ca<jats:sup>2+</jats:sup> wave activity ten weeks post-surgery, while islet wave activity in sham animals fell to zero discernible coordinated islet Ca<jats:sup>2+</jats:sup> activity at the same time point. Correspondingly, VSG mice displayed significantly improved glucose tolerance and insulin secretion. Circulating fasting levels of GLP-1 were also increased after surgery, potentially contributing to improved β cell performance. We thus demonstrate that bariatric surgery leads to time-dependent increases in individual β cell function and intra-islet connectivity, together driving increased insulin secretion and diabetes remission, in a weight-loss independent fashion.</jats:p><jats:sec><jats:title>Significance Statement</jats:title><jats:p>Used widely to treat obesity, bariatric surgery also relieves the symptoms of type 2 diabetes. The mechanisms involved in diabetes remission are still

Journal article

Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, Piunti A, Cheng K, Huang M, Pullen TJ, Georgiadou E, Stylianides T, Amirruddin NS, Salem V, Distaso W, Cakebread A, Heesom KJ, Lewis PA, Hodson DJ, Briant LJ, Fung ACH, Sessions RB, Alpy F, Kong APS, Benke PI, Torta F, Teo AKK, Leclerc I, Solimena M, Wigley DB, Rutter GAet al., 2020, The type 2 diabetes gene product STARD10 is a phosphoinositide binding protein that controls insulin secretory granule biogenesis

<jats:title>Abstract</jats:title><jats:sec><jats:title>Objective</jats:title><jats:p>Risk alleles for type 2 diabetes at the<jats:italic>STARD10</jats:italic>locus are associated with lowered<jats:italic>STARD10</jats:italic>expression in the β-cell, impaired glucose-induced insulin secretion and decreased circulating proinsulin:insulin ratios. Although likely to serve as a mediator of intracellular lipid transfer, the identity of the transported lipids, and thus the pathways through which STARD10 regulates β-cell function, are not understood. The aim of this study was to identify the lipids transported and affected by STARD10 in the β-cell and its effect on proinsulin processing and insulin granule biogenesis and maturation.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We used isolated islets from mice deleted selectively in the β-cell for<jats:italic>Stard10</jats:italic>(β<jats:italic>StarD10</jats:italic>KO) and performed electron microscopy, pulse-chase, RNA sequencing and lipidomic analyses. Proteomic analysis of STARD10 binding partners was executed in INS1 (832/13) cell line. X-ray crystallography followed by molecular docking and lipid overlay assay were performed on purified STARD10 protein.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>β<jats:italic>StarD10</jats:italic>KO islets had a sharply altered dense core granule appearance, with a dramatic increase in the number of “rod-like” dense cores. Correspondingly, basal secretion of proinsulin was increased. Amongst the differentially expressed genes in β<jats:italic>StarD10</jats:italic>KO islets, expression of the phosphoinositide binding proteins<jats:italic>Pirt</jats:italic>and<jats:italic>Synaptotagmin 1</jats:

Working paper

Bhatt PS, Sam AH, Meeran KM, Salem Vet al., 2019, The relevance of cortisol co-secretion from aldosterone-producing adenomas, Hormones (Athens, Greece), Vol: 18, Pages: 307-313, ISSN: 1109-3099

AIMS AND OBJECTIVES: Adrenal adenomas are usually non-functioning, but can secrete aldosterone or cortisol. It has recently been suggested that many more adenomas than previously thought secrete more than one hormone. This has important implications for their clinical management. Our aim was to determine the frequency of cortisol co-secretion in primary hyperaldosteronism at our institution and investigate the difference in metabolic profiles and clinical outcomes between co-secreting and non-co-secreting patients. DESIGN AND PATIENTS: A retrospective study of 25 patients with primary hyperaldosteronism who also underwent formal dexamethasone suppression tests to determine cortisol co-secretion. MEASUREMENTS: Post-dexamethasone suppression test cortisol, serum ALT, total cholesterol, HDL-cholesterol, LDL-cholesterol, HbA1C (were recorded) and mean arterial pressure are reported in this cohort of patients with primary hyperaldosteronism. RESULTS: Four out of 25 patients with primary hyperaldosteronism failed dexamethasone suppression tests. This suggests a frequency of co-secretion ranging between 4 and 16%. No significant difference was found in serum ALT, total cholesterol, serum HDL-cholesterol, LDL-cholesterol and mean arterial blood pressure at presentation between co-secretors and non-co-secretors. CONCLUSION: A frequency range of 4-16% suggests that a significant proportion of patients with primary hyperaldosteronism co-secrete cortisol. Co-secretors did not have a worse metabolic profile than non-secretors. The impact of co-secretion on metabolic profile and surgical management remains unclear and warrants further study.

Journal article

Salem V, Suba K, Alonso AM, Chabosseau PL, Georgiadou E, Stylianides T, Briant L, Hodson D, Carrat G, Leclerc I, Gaboriau DC, Rothery SM, Rutter GAet al., 2019, Real-Time In Vivo Imaging of Whole Islet Ca2+Dynamics Reveals Glucose -Induced Changes in Beta-Cell Connectivity in Mouse and Human Islets, 79th Scientific Sessions of the American-Diabetes-Association (ADA), Publisher: AMER DIABETES ASSOC, ISSN: 0012-1797

Conference paper

Salem V, Delgadillo Silva L, Suba K, Mousavy Gharavy SN, Akhtar N, Martin-Alonso A, Gaboriau DCA, Rothery SM, Styliandes T, Carrat G, Pullen TJ, Pal Singh S, Hodson DJ, Leclerc I, Shapiro AMJ, Marchetti P, Briant LB, Distaso W, Ninov N, Rutter G, Georgiadou Eet al., 2019, Leader β-cells coordinate Ca2+ dynamics across pancreatic islets in vivo, Nature Metabolism, Vol: 1, Pages: 615-629, ISSN: 2522-5812

Pancreatic β-cells form highly connected networks within isolated islets. Whether this behaviour pertains to the situation in vivo, after innervation and during continuous perfusion with blood, is unclear. In the present study, we used the recombinant Ca2+ sensor GCaMP6 to assess glucose-regulated connectivity in living zebrafish Danio rerio, and in murine or human islets transplanted into the anterior eye chamber. In each setting, Ca2+ waves emanated from temporally defined leader β-cells, and three-dimensional connectivity across the islet increased with glucose stimulation. Photoablation of zebrafish leader cells disrupted pan-islet signalling, identifying these as likely pacemakers. Correspondingly, in engrafted mouse islets, connectivity was sustained during prolonged glucose exposure, and super-connected ‘hub’ cells were identified. Granger causality analysis revealed a controlling role for temporally defined leaders, and transcriptomic analyses revealed a discrete hub cell fingerprint. We thus define a population of regulatory β-cells within coordinated islet networks in vivo. This population may drive Ca2+ dynamics and pulsatile insulin secretion.

Journal article

Dorman E, Salem V, Valabhji J, Bravis Vet al., 2019, Conservative management of diabetic foot ulceration complicated by underlying osteomyelitis, Publisher: WILEY, Pages: 128-128, ISSN: 0742-3071

Conference paper

Rahman S, Salem V, Sangster A, Dunbar J, Arkle T, Bloomfield L, Bravis Vet al., 2019, Do tissue cultures add useful microbial information that changes diabetic foot ulcers management and outcome?, Publisher: WILEY, Pages: 126-126, ISSN: 0742-3071

Conference paper

Hirani D, Salem V, Bravis V, 2019, Conservative management of diabetic foot ulceration: Healing, amputation rates and deaths in non-heel and heel wounds presenting to a central London multidisciplinary diabetes foot service, Publisher: WILEY, Pages: 125-125, ISSN: 0742-3071

Conference paper

Salem V, Delgadillo L, Suba K, Georgiadou E, Kalogianni V, Marchetti P, Hodson D, Distaso W, Ninov N, Rutter GAet al., 2019, 3-dimensional pancreatic beta cell Ca<SUP>2+</SUP> dynamics in vivo: Hub cells dictate connectivity and glucose responsivity, Publisher: WILEY, Pages: 22-22, ISSN: 0742-3071

Conference paper

Salem V, Suba K, Martin Alonso A, Delgadillo Silva LF, Akhtar N, Mousavy N, Georgiadou E, Gaboriau D, Rothery S, Stylianides T, Marchetti P, Briant L, Ninov N, Hodson D, Distaso W, Rutter Get al., 2018, Glucose regulates pancreatic [beta] cell Ca2+ dynamics and connectivity in vivo in the anterior chamber of the mouse eye, Society for Endocrinology - British Endocrine Societies 2018, ISSN: 1470-3947

Conference paper

Comninos A, Demetriou L, Wall M, Shah A, Clarke S, Narayanaswamy S, Nesbitt A, Izzi-Engbeaya C, Prague J, Abbara A, Ratnasabapathy R, Yang LY, Salem V, Nijher G, Jayasena C, Tanner M, Bassett P, Mehta A, McGonigle J, Rabiner E, Bloom S, Dhillo Wet al., 2018, Modulations of human resting brain connectivity by Kisspeptin enhance sexual and emotional Functions, JCI insight, Vol: 3, Pages: 1-11, ISSN: 2379-3708

BACKGROUND. Resting brain connectivity is a crucial component of human behavior demonstrated by disruptions in psychosexual and emotional disorders. Kisspeptin, a recently identified critical reproductive hormone, can alter activity in certain brain structures but its effects on resting brain connectivity and networks in humans remain elusive.METHODS. We determined the effects of kisspeptin on resting brain connectivity (using functional neuroimaging) and behavior (using psychometric analyses) in healthy men, in a randomized double-blinded 2-way placebo-controlled study.RESULTS. Kisspeptin’s modulation of the default mode network (DMN) correlated with increased limbic activity in response to sexual stimuli (globus pallidus r = 0.500, P = 0.005; cingulate r = 0.475, P = 0.009). Furthermore, kisspeptin’s DMN modulation was greater in men with less reward drive (r = –0.489, P = 0.008) and predicted reduced sexual aversion (r = –0.499, P = 0.006), providing key functional significance. Kisspeptin also enhanced key mood connections including between the amygdala-cingulate, hippocampus-cingulate, and hippocampus–globus pallidus (all P < 0.05). Consistent with this, kisspeptin’s enhancement of hippocampus–globus pallidus connectivity predicted increased responses to negative stimuli in limbic structures (including the thalamus and cingulate [all P < 0.01]).CONCLUSION. Taken together, our data demonstrate a previously unknown role for kisspeptin in the modulation of functional brain connectivity and networks, integrating these with reproductive hormones and behaviors. Our findings that kisspeptin modulates resting brain connectivity to enhance sexual and emotional processing and decrease sexual aversion, provide foundation for kisspeptin-based therapies for associated disorders of body and mind.

Journal article

Salem V, Silva LD, Suba K, Akhtar N, Mousavy N, Martin-Alonso A, Georgiadou E, Gaboriau DCA, Rothery SM, Stylianides T, Hodson DJ, Marchetti P, Briant L, Ninov N, Rutter GAet al., 2018, Glucose regulates pancreatic islet beta cell calcium dynamics and intercellular connectivity in vivo, 54th Annual Meeting of the European-Association-for-the-Study-of-Diabetes (EASD), Publisher: SPRINGER, Pages: S18-S18, ISSN: 0012-186X

Conference paper

Salem V, Suba K, Martin Alonso A, Chabosseau P, Georgiadou E, Stylianides T, Briant L, Hodson D, Carrat G, Leclerc I, Gaboriau D, Rothery S, Rutter Get al., 2018, Real-Time In Vivo Imaging of Whole Islet Ca2+ Dynamics Reveals Glucose-Induced Changes in Beta-Cell Connectivity in Mouse and Human Islets, American Diabetes Association, 78th Scientific Sessions, Publisher: American Diabetes Association, ISSN: 0012-1797

Conference paper

Suba K, Nguyen-Tu MS, Chabosseau P, Carrat GR, Leclerc I, Gaboriau DCA, Rothery SM, Salem V, Rutter GAet al., 2018, Measuring real-time islet blood vessel responses to hormonal challenges using the platform of transplanted islets in the anterior chamber of the murine eye, Diabetes UK, Publisher: WILEY, Pages: 49-49, ISSN: 0742-3071

Conference paper

Law J, Morris DE, Izzi-Engbeaya CN, Salem V, Coello C, Robinson L, Jayasinghe M, Scott R, Gunn R, Rabiner E, Tan T, Dhillo WS, Bloom SR, Budge H, Symonds MEet al., 2018, Thermal imaging is a non-invasive alternative to PET-CT for measurement of brown adipose tissue activity in humans, Journal of Nuclear Medicine, Vol: 59, Pages: 516-522, ISSN: 1535-5667

Obesity and its metabolic consequences are a major cause of morbidity and mortality. Brown adipose tissue (BAT) utilizes glucose and free fatty acids to produce heat, thereby increasing energy expenditure. Effective evaluation of human BAT stimulators is constrained by the current standard method of assessing BAT—PET/CT—as it requires exposure to high doses of ionizing radiation. Infrared thermography (IRT) is a potential noninvasive, safe alternative, although direct corroboration with PET/CT has not been established. Methods: IRT and 18F-FDG PET/CT data from 8 healthy men subjected to water-jacket cooling were directly compared. Thermal images were geometrically transformed to overlay PET/CT-derived maximum intensity projection (MIP) images from each subject, and the areas with the most intense temperature and glucose uptake within the supraclavicular regions were compared. Relationships between supraclavicular temperatures (TSCR) from IRT and the metabolic rate of glucose uptake (MR(gluc)) from PET/CT were determined. Results: Glucose uptake on MR(gluc)MIP was found to correlate positively with a change in TSCR relative to a reference region (r2 = 0.721; P = 0.008). Spatial overlap between areas of maximal MR(gluc)MIP and maximal TSCR was 29.5% ± 5.1%. Prolonged cooling, for 60 min, was associated with a further TSCR rise, compared with cooling for 10 min. Conclusion: The supraclavicular hotspot identified on IRT closely corresponded to the area of maximal uptake on PET/CT-derived MR(gluc)MIP images. Greater increases in relative TSCR were associated with raised glucose uptake. IRT should now be considered a suitable method for measuring BAT activation, especially in populations for whom PET/CT is not feasible, practical, or repeatable.

Journal article

Hameed S, Salem V, Tan T, Collins A, Shah K, Scholtz S, Ahmed A, Chahal Het al., 2018, Beyond weight loss: establishing a postbariatric surgery patient support group - what do patients want?, Journal of Obesity, Vol: 2018, Pages: 1-7, ISSN: 2090-0708

Purpose: There are limited resources for long-term specialist follow-up after bariatric surgery. In selected centres, patients can access a postoperative support group, but there is no clear evidence to guide their delivery. Materials and Methods: A retrospective study of bariatric surgery patients (n = 152) who had been discharged from specialist follow-up (mean time since surgery 5.5 years), covering weight history, physical and psychosocial comorbidities, and the need for a postoperative bariatric support group. Results: Fifty-eight percent wanted a postbariatric surgery patient support group. This was not associated with operation type or the amount of weight lost or regained. However, those who wanted a support group were significantly more likely to be struggling to keep the weight off, to be unhappy with the way they look, or to be experiencing difficulties returning to work.Conclusions: These data point to an unmet patient requirement for a postoperative support group that is independent of weight loss success. More research is required to ascertain how such a group should be delivered, but our data would suggest that supporting patients with weight loss maintenance, body image, and return to work is an important part of postoperative care, and these needs extend well beyond the immediate period of specialist follow-up.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00502321&person=true&page=2&respub-action=search.html