Imperial College London

Dr Vanessa Sancho-Shimizu

Faculty of MedicineDepartment of Infectious Disease

Reader in Human Genetics of Infectious Diseases
 
 
 
//

Contact

 

+44 (0)20 7594 3914v.sancho-shimizu

 
 
//

Location

 

309Norfolk PlaceSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

119 results found

Baruch J, Rojek A, Kartsonaki C, Vijayaraghavan BKT, Gonçalves BP, Pritchard MG, Merson L, Dunning J, Hall M, Sigfrid L, Citarella BW, Murthy S, Yeabah TO, Olliaro P, ISARIC Clinical Characterisation Groupet al., 2022, Symptom-based case definitions for COVID-19: Time and geographical variations for detection at hospital admission among 260,000 patients., Influenza Other Respir Viruses, Vol: 16, Pages: 1040-1050

INTRODUCTION: Case definitions are used to guide clinical practice, surveillance and research protocols. However, how they identify COVID-19-hospitalised patients is not fully understood. We analysed the proportion of hospitalised patients with laboratory-confirmed COVID-19, in the ISARIC prospective cohort study database, meeting widely used case definitions. METHODS: Patients were assessed using the Centers for Disease Control (CDC), European Centre for Disease Prevention and Control (ECDC), World Health Organization (WHO) and UK Health Security Agency (UKHSA) case definitions by age, region and time. Case fatality ratios (CFRs) and symptoms of those who did and who did not meet the case definitions were evaluated. Patients with incomplete data and non-laboratory-confirmed test result were excluded. RESULTS: A total of 263,218 of the patients (42%) in the ISARIC database were included. Most patients (90.4%) were from Europe and Central Asia. The proportions of patients meeting the case definitions were 56.8% (WHO), 74.4% (UKHSA), 81.6% (ECDC) and 82.3% (CDC). For each case definition, patients at the extremes of age distribution met the criteria less frequently than those aged 30 to 70 years; geographical and time variations were also observed. Estimated CFRs were similar for the patients who met the case definitions. However, when more patients did not meet the case definition, the CFR increased. CONCLUSIONS: The performance of case definitions might be different in different regions and may change over time. Similarly concerning is the fact that older patients often did not meet case definitions, risking delayed medical care. While epidemiologists must balance their analytics with field applicability, ongoing revision of case definitions is necessary to improve patient care through early diagnosis and limit potential nosocomial spread.

Journal article

Bolze A, Mogensen TH, Zhang S-Y, Abel L, Andreakos E, Arkin LM, Borghesi A, Brodin P, Hagin D, Novelli G, Okada S, Peter J, Renia L, Severe K, Tiberghien P, Vinh DC, Cirulli ET, Casanova J-L, Hsieh EWYet al., 2022, Decoding the Human Genetic and Immunological Basis of COVID-19 mRNA Vaccine-Induced Myocarditis, JOURNAL OF CLINICAL IMMUNOLOGY, Vol: 42, Pages: 1354-1359, ISSN: 0271-9142

Journal article

Reyes LF, Murthy S, Garcia-Gallo E, Merson L, Ibanez-Prada ED, Rello J, Fuentes Y, Martin-Loeches I, Bozza F, Duque S, Taccone FS, Fowler RA, Kartsonaki C, Goncalves BP, Citarella BW, Aryal D, Burhan E, Cummings MJ, Delmas C, Diaz R, Figueiredo-Mello C, Hashmi M, Panda PK, Jimenez MP, Rincon DFB, Thomson D, Nichol A, Marshall JC, Olliaro PLet al., 2022, Respiratory support in patients with severe COVID-19 in the International Severe Acute Respiratory and Emerging Infection (ISARIC) COVID-19 study: a prospective, multinational, observational study, Critical Care (UK), Vol: 26, Pages: 1-16, ISSN: 1364-8535

BackgroundUp to 30% of hospitalised patients with COVID-19 require advanced respiratory support, including high-flow nasal cannulas (HFNC), non-invasive mechanical ventilation (NIV), or invasive mechanical ventilation (IMV). We aimed to describe the clinical characteristics, outcomes and risk factors for failing non-invasive respiratory support in patients treated with severe COVID-19 during the first two years of the pandemic in high-income countries (HICs) and low middle-income countries (LMICs).MethodsThis is a multinational, multicentre, prospective cohort study embedded in the ISARIC-WHO COVID-19 Clinical Characterisation Protocol. Patients with laboratory-confirmed SARS-CoV-2 infection who required hospital admission were recruited prospectively. Patients treated with HFNC, NIV, or IMV within the first 24 h of hospital admission were included in this study. Descriptive statistics, random forest, and logistic regression analyses were used to describe clinical characteristics and compare clinical outcomes among patients treated with the different types of advanced respiratory support.ResultsA total of 66,565 patients were included in this study. Overall, 82.6% of patients were treated in HIC, and 40.6% were admitted to the hospital during the first pandemic wave. During the first 24 h after hospital admission, patients in HICs were more frequently treated with HFNC (48.0%), followed by NIV (38.6%) and IMV (13.4%). In contrast, patients admitted in lower- and middle-income countries (LMICs) were less frequently treated with HFNC (16.1%) and the majority received IMV (59.1%). The failure rate of non-invasive respiratory support (i.e. HFNC or NIV) was 15.5%, of which 71.2% were from HIC and 28.8% from LMIC. The variables most strongly associated with non-invasive ventilation failure, defined as progression to IMV, were high leukocyte counts at hospital admission (OR [95%CI]; 5.86 [4.83–7.10]), treatment in an LMIC (OR [95%CI]; 2.04 [1.97–2.11]), and tac

Journal article

Garcia-Gallo E, Merson L, Kennon K, Kelly S, Citarella BW, Fryer DV, Shrapnel S, Lee J, Duque S, Fuentes YV, Balan V, Smith S, Wei J, Goncalves BP, Russell CD, Sigfrid L, Dagens A, Olliaro PL, Baruch J, Kartsonaki C, Dunning J, Rojek A, Rashan A, Beane A, Murthy S, Reyes LFet al., 2022, ISARIC-COVID-19 dataset: a prospective, standardized, global dataset of patients hospitalized with COVID-19, Scientific Data, Vol: 9, Pages: 1-22, ISSN: 2052-4463

The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use.

Journal article

Brodin P, Casari G, Townsend L, O'Farrelly C, Tancevski I, Loeffler-Ragg J, Mogensen TH, Casanova JLet al., 2022, Studying severe long COVID to understand post-infectious disorders beyond COVID-19, NATURE MEDICINE, Vol: 28, Pages: 879-882, ISSN: 1078-8956

Journal article

Närhi F, Moonesinghe SR, Shenkin SD, Drake TM, Mulholland RH, Donegan C, Dunning J, Fairfield CJ, Girvan M, Hardwick HE, Ho A, Leeming G, Nguyen-Van-Tam JS, Pius R, Russell CD, Shaw CA, Spencer RG, Turtle L, Openshaw PJM, Baillie JK, Harrison EM, Semple MG, Docherty AB, ISARIC4C investigatorset al., 2022, Implementation of corticosteroids in treatment of COVID-19 in the ISARIC WHO Clinical Characterisation Protocol UK: prospective, cohort study., The Lancet Digital Health, Vol: 4, Pages: e220-e234, ISSN: 2589-7500

BACKGROUND: Dexamethasone was the first intervention proven to reduce mortality in patients with COVID-19 being treated in hospital. We aimed to evaluate the adoption of corticosteroids in the treatment of COVID-19 in the UK after the RECOVERY trial publication on June 16, 2020, and to identify discrepancies in care. METHODS: We did an audit of clinical implementation of corticosteroids in a prospective, observational, cohort study in 237 UK acute care hospitals between March 16, 2020, and April 14, 2021, restricted to patients aged 18 years or older with proven or high likelihood of COVID-19, who received supplementary oxygen. The primary outcome was administration of dexamethasone, prednisolone, hydrocortisone, or methylprednisolone. This study is registered with ISRCTN, ISRCTN66726260. FINDINGS: Between June 17, 2020, and April 14, 2021, 47 795 (75·2%) of 63 525 of patients on supplementary oxygen received corticosteroids, higher among patients requiring critical care than in those who received ward care (11 185 [86·6%] of 12 909 vs 36 415 [72·4%] of 50 278). Patients 50 years or older were significantly less likely to receive corticosteroids than those younger than 50 years (adjusted odds ratio 0·79 [95% CI 0·70-0·89], p=0·0001, for 70-79 years; 0·52 [0·46-0·58], p<0·0001, for >80 years), independent of patient demographics and illness severity. 84 (54·2%) of 155 pregnant women received corticosteroids. Rates of corticosteroid administration increased from 27·5% in the week before June 16, 2020, to 75-80% in January, 2021. INTERPRETATION: Implementation of corticosteroids into clinical practice in the UK for patients with COVID-19 has been successful, but not universal. Patients older than 70 years, independent of illness severity, chronic neurological disease, and dementia, were less likely to receive corticosteroids than those who were younger, as were pregnant wom

Journal article

Zhang Q, Bastard P, COVID Human Genetic Effort, Cobat A, Casanova J-Let al., 2022, Human genetic and immunological determinants of critical COVID-19 pneumonia., Nature, Vol: 603, Pages: 587-598

SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNβ and/or IFNω, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.

Journal article

Dejnirattisai W, Huo J, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn HME, Ginn HM, Mentzer AJ, Tuekprakhon A, Nutalai R, Wang B, Dijokaite A, Khan S, Avinoam O, Bahar M, Skelly D, Adele S, Johnson SA, Amini A, Ritter TG, Mason C, Dold C, Pan D, Assadi S, Bellass A, Omo-Dare N, Koeckerling D, Flaxman A, Jenkin D, Aley PK, Voysey M, Costa Clemens SA, Naveca FG, Nascimento V, Nascimento F, Fernandes da Costa C, Resende PC, Pauvolid-Correa A, Siqueira MM, Baillie V, Serafin N, Kwatra G, Da Silva K, Madhi SA, Nunes MC, Malik T, Openshaw PJM, Baillie JK, Semple MG, Townsend AR, Huang K-YA, Tan TK, Carroll MW, Klenerman P, Barnes E, Dunachie SJ, Constantinides B, Webster H, Crook D, Pollard AJ, Lambe T, OPTIC Consortium, ISARIC4C Consortium, Paterson NG, Williams MA, Hall DR, Fry EE, Mongkolsapaya J, Ren J, Schreiber G, Stuart DI, Screaton GRet al., 2022, SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses, Cell, Vol: 185, Pages: 467-484.e15, ISSN: 0092-8674

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

Journal article

Keeling MJ, Dyson L, Guyver-Fletcher G, Holmes A, Semple MG, Tildesley MJ, Hill EMet al., 2022, Fitting to the UK COVID-19 outbreak, short-term forecasts and estimating the reproductive number, Statistical Methods in Medical Research, ISSN: 0962-2802

The COVID-19 pandemic has brought to the fore the need for policy makers to receive timely and ongoing scientific guidance in response to this recently emerged human infectious disease. Fitting mathematical models of infectious disease transmission to the available epidemiological data provide a key statistical tool for understanding the many quantities of interest that are not explicit in the underlying epidemiological data streams. Of these, the effective reproduction number, R, has taken on special significance in terms of the general understanding of whether the epidemic is under control (R<1). Unfortunately, none of the epidemiological data streams are designed for modelling, hence assimilating information from multiple (often changing) sources of data is a major challenge that is particularly stark in novel disease outbreaks. Here, focusing on the dynamics of the first wave (March–June 2020), we present in some detail the inference scheme employed for calibrating the Warwick COVID-19 model to the available public health data streams, which span hospitalisations, critical care occupancy, mortality and serological testing. We then perform computational simulations, making use of the acquired parameter posterior distributions, to assess how the accuracy of short-term predictions varied over the time course of the outbreak. To conclude, we compare how refinements to data streams and model structure impact estimates of epidemiological measures, including the estimated growth rate and daily incidence.

Journal article

David A, Parkinson N, Peacock TP, Pairo-Castineira E, Khanna T, Cobat A, Tenesa A, Sancho-Shimizu V, Casanova J-L, Abel L, Barclay WS, Baillie JK, Sternberg MJEet al., 2022, A common TMPRSS2 variant has a protective effect against severe COVID-19, Current Research in Translational Medicine, Vol: 70, ISSN: 2452-3186

Background: The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may modulate the severity of SARS-CoV-2 infection.Methods: We focused on the only common TMPRSS2 non-synonymous variant predicted to be damaging (rs12329760 C>T, p.V160M), which has a minor allele frequency ranging from from 0.14 in Ashkenazi Jewish to 0.38 in East Asians. We analysed the association between the rs12329760 and COVID-19 severity in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units recruited as part of the GenOMICC (Genetics Of Mortality In Critical Care) study. Logistic regression analyses were adjusted for sex, age and deprivation index. For in vitro studies, HEK293 cells were co-transfected with ACE2 and either TMPRSS2 wild type or mutant (TMPRSS2V160M). A SARS-CoV-2 pseudovirus entry assay was used to investigate the ability of TMPRSS2V160M to promote viral entry.Results: We show that the T allele of rs12329760 is associated with a reduced likelihood of developing severe COVID-19 (OR 0.87, 95%CI:0.79-0.97, p=0.01). This association was stronger in homozygous individuals when compared to the general population (OR 0.65, 95%CI:0.50-0.84, p=1.3 × 10−3). We demonstrate in vitro that this variant, which causes the amino acid substitution valine to methionine, affects the catalytic activity of TMPRSS2 and is less able to support SARS-CoV-2 spike-mediated entry into cells.Conclusion: TMPRSS2 rs12329760 is a common variant associated with a significantly decreased risk of severe COVID-19. Further studies are needed to assess the expression of TMPRSS2 across different age groups. Moreover, our results identify TMPRSS2 as a promising drug target, with a potential role for

Journal article

ISARIC Clinical Characterisation Group, 2021, The value of open-source clinical science in pandemic response: lessons from ISARIC., Lancet Infectious Diseases, Vol: 21, Pages: 1623-1624, ISSN: 1473-3099

Journal article

Knight SR, Gupta RK, Ho A, Pius R, Buchan I, Carson G, Drake TM, Dunning J, Fairfield CJ, Gamble C, Green CA, Halpin S, Hardwick HE, Holden KA, Horby PW, Jackson C, Mclean KA, Merson L, Nguyen-Van-Tam JS, Norman L, Olliaro PL, Pritchard MG, Russell CD, Shaw CA, Sheikh A, Solomon T, Sudlow C, Swann O, Turtle LCW, Openshaw PJM, Baillie JK, Docherty A, Semple MG, Noursadeghi M, Harrison EMet al., 2021, Prospective validation of the 4C prognostic models for adults hospitalised with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol, Thorax, Vol: 77, Pages: 1-10, ISSN: 0040-6376

Purpose To prospectively validate two risk scores to predict mortality (4C Mortality) and in-hospital deterioration (4C Deterioration) among adults hospitalised with COVID-19.Methods Prospective observational cohort study of adults (age ≥18 years) with confirmed or highly suspected COVID-19 recruited into the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study in 306 hospitals across England, Scotland and Wales. Patients were recruited between 27 August 2020 and 17 February 2021, with at least 4 weeks follow-up before final data extraction. The main outcome measures were discrimination and calibration of models for in-hospital deterioration (defined as any requirement of ventilatory support or critical care, or death) and mortality, incorporating predefined subgroups.Results 76 588 participants were included, of whom 27 352 (37.4%) deteriorated and 12 581 (17.4%) died. Both the 4C Mortality (0.78 (0.77 to 0.78)) and 4C Deterioration scores (pooled C-statistic 0.76 (95% CI 0.75 to 0.77)) demonstrated consistent discrimination across all nine National Health Service regions, with similar performance metrics to the original validation cohorts. Calibration remained stable (4C Mortality: pooled slope 1.09, pooled calibration-in-the-large 0.12; 4C Deterioration: 1.00, –0.04), with no need for temporal recalibration during the second UK pandemic wave of hospital admissions.Conclusion Both 4C risk stratification models demonstrate consistent performance to predict clinical deterioration and mortality in a large prospective second wave validation cohort of UK patients. Despite recent advances in the treatment and management of adults hospitalised with COVID-19, both scores can continue to inform clinical decision making.Trial registration number ISRCTN66726260.

Journal article

de Silva TI, Liu G, Lindsey BB, Dong D, Moore SC, Hsu NS, Shah D, Wellington D, Mentzer AJ, Angyal A, Brown R, Parker MD, Ying Z, Yao X, Turtle L, Dunachie S, COVID-19 Genomics UK COG-UK Consortium, Maini MK, Ogg G, Knight JC, ISARIC4C Investigators, Peng Y, Rowland-Jones SL, Dong Tet al., 2021, The impact of viral mutations on recognition by SARS-CoV-2 specific T cells., iScience, Vol: 24, Pages: 103353-103353, ISSN: 2589-0042

We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.

Journal article

Wickenhagen A, Sugrue E, Lytras S, Kuchi S, Noerenberg M, Turnbull ML, Loney C, Herder V, Allan J, Jarmson I, Cameron-Ruiz N, Varjak M, Pinto RM, Lee JY, Iselin L, Palmalux N, Stewart DG, Swingler S, Greenwood EJD, Crozier TWM, Gu Q, Davies EL, Clohisey S, Wang B, Maranhao Costa FT, Santana MF, de Lima Ferreira LC, Murphy L, Fawkes A, Meynert A, Grimes G, Filho JLDS, Marti M, Hughes J, Stanton RJ, Wang ECY, Ho A, Davis I, Jarrett RF, Castello A, Robertson DL, Semple MG, Openshaw PJM, Palmarini M, Lehner PJ, Baillie JK, Rihn SJ, Wilson SJet al., 2021, A prenylated dsRNA sensor protects against severe COVID-19, Science, Vol: 374, Pages: 1-18, ISSN: 0036-8075

Journal article

Sabli IKD, Sancho-Shimizu V, 2021, Inborn errors of autophagy and infectious diseases, CURRENT OPINION IN IMMUNOLOGY, Vol: 72, Pages: 272-276, ISSN: 0952-7915

Journal article

Bastard P, Gervais A, Le Voyer T, Rosain J, Philippot Q, Manry J, Michailidis E, Hoffmann H-H, Eto S, Garcia-Prat M, Bizien L, Parra-Martínez A, Yang R, Haljasmägi L, Migaud M, Särekannu K, Maslovskaja J, de Prost N, Tandjaoui-Lambiotte Y, Luyt C-E, Amador-Borrero B, Gaudet A, Poissy J, Morel P, Richard P, Cognasse F, Troya J, Trouillet-Assant S, Belot A, Saker K, Garçon P, Rivière JG, Lagier J-C, Gentile S, Rosen LB, Shaw E, Morio T, Tanaka J, Dalmau D, Tharaux P-L, Sene D, Stepanian A, Megarbane B, Triantafyllia V, Fekkar A, Heath JR, Franco JL, Anaya J-M, Solé-Violán J, Imberti L, Biondi A, Bonfanti P, Castagnoli R, Delmonte OM, Zhang Y, Snow AL, Holland SM, Biggs C, Moncada-Vélez M, Arias AA, Lorenzo L, Boucherit S, Coulibaly B, Anglicheau D, Planas AM, Haerynck F, Duvlis S, Nussbaum RL, Ozcelik T, Keles S, Bousfiha AA, El Bakkouri J, Ramirez-Santana C, Paul S, Pan-Hammarström Q, Hammarström L, Dupont A, Kurolap A, Metz CN, Aiuti A, Casari G, Lampasona V, Ciceri F, Barreiros LA, Dominguez-Garrido E, Vidigal M, Zatz M, van de Beek D, Sahanic S, Tancevski I, Stepanovskyy Y, Boyarchuk O, Nukui Y, Tsumura M, Vidaur L, Tangye SG, Burrel S, Duffy D, Quintana-Murci L, Klocperk A, Kann NY, Shcherbina A, Lau Y-L, Leung D, Coulongeat M, Marlet J, Koning R, Reyes LF, Chauvineau-Grenier A, Venet F, Monneret G, Nussenzweig MC, Arrestier R, Boudhabhay I, Baris-Feldman H, Hagin D, Wauters J, Meyts I, Dyer AH, Kennelly SP, Bourke NM, Halwani R, Sharif-Askari NS, Dorgham K, Sallette J, Sedkaoui SM, AlKhater S, Rigo-Bonnin R, Morandeira F, Roussel L, Vinh DC, Ostrowski SR, Condino-Neto A, Prando C, Bonradenko A, Spaan AN, Gilardin L, Fellay J, Lyonnet S, Bilguvar K, Lifton RP, Mane S, HGID Lab, COVID Clinicians, COVID-STORM Clinicians, NIAID Immune Response to COVID Group, NH-COVAIR Study Group, Danish CHGE, Danish Blood Donor Study, St James's Hospital, SARS CoV2 Interest group, French COVID Cohort Study Group, Imagine COVID-Group, Milieu Intérieur Consortium, CoV-Cet al., 2021, Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths., Sci Immunol, Vol: 6

Circulating autoantibodies (auto-Abs) neutralizing high concentrations (10 ng/mL, in plasma diluted 1 to 10) of IFN-α and/or -ω are found in about 10% of patients with critical COVID-19 pneumonia, but not in subjects with asymptomatic infections. We detect auto-Abs neutralizing 100-fold lower, more physiological, concentrations of IFN-α and/or -ω (100 pg/mL, in 1/10 dilutions of plasma) in 13.6% of 3,595 patients with critical COVID-19, including 21% of 374 patients > 80 years, and 6.5% of 522 patients with severe COVID-19. These antibodies are also detected in 18% of the 1,124 deceased patients (aged 20 days-99 years; mean: 70 years). Moreover, another 1.3% of patients with critical COVID-19 and 0.9% of the deceased patients have auto-Abs neutralizing high concentrations of IFN-β. We also show, in a sample of 34,159 uninfected subjects from the general population, that auto-Abs neutralizing high concentrations of IFN-α and/or -ω are present in 0.18% of individuals between 18 and 69 years, 1.1% between 70 and 79 years, and 3.4% >80 years. Moreover, the proportion of subjects carrying auto-Abs neutralizing lower concentrations is greater in a subsample of 10,778 uninfected individuals: 1% of individuals <70 years, 2.3% between 70 and 80 years, and 6.3% >80 years. By contrast, auto-Abs neutralizing IFN-β do not become more frequent with age. Auto-Abs neutralizing type I IFNs predate SARS-CoV-2 infection and sharply increase in prevalence after the age of 70 years. They account for about 20% of both critical COVID-19 cases in the over-80s, and total fatal COVID-19 cases.

Journal article

Taft J, Markson M, Legarda D, Patel R, Chan M, Malle L, Richardson A, Gruber C, Martin-Fernandez M, Mancini GMS, van Laar JAM, van Pelt P, Buta S, Wokke BHA, Sabli IKD, Sancho-Shimizu V, Chavan PP, Schnappauf O, Khubchandani R, Cuceoglu MK, Ozen S, Kastner DL, Ting AT, Aksentijevich I, Hollink IHIM, Bogunovic Det al., 2021, Human TBK1 deficiency leads to autoinflammation driven by TNF-induced cell death, CELL, Vol: 184, Pages: 4447-+, ISSN: 0092-8674

Journal article

Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Maglorius Renkilaraj MRL, Zhang P, Meertens L, Bolze A, Materna M, Korniotis S, Gervais A, Talouarn E, Bigio B, Seeleuthner Y, Bilguvar K, Zhang Y, Neehus A-L, Ogishi M, Pelham SJ, Le Voyer T, Rosain J, Philippot Q, Soler-Palacín P, Colobran R, Martin-Nalda A, Rivière JG, Tandjaoui-Lambiotte Y, Chaïbi K, Shahrooei M, Darazam IA, Olyaei NA, Mansouri D, Hatipoğlu N, Palabiyik F, Ozcelik T, Novelli G, Novelli A, Casari G, Aiuti A, Carrera P, Bondesan S, Barzaghi F, Rovere-Querini P, Tresoldi C, Franco JL, Rojas J, Reyes LF, Bustos IG, Arias AA, Morelle G, Christèle K, Troya J, Planas-Serra L, Schlüter A, Gut M, Pujol A, Allende LM, Rodriguez-Gallego C, Flores C, Cabrera-Marante O, Pleguezuelo DE, de Diego RP, Keles S, Aytekin G, Akcan OM, Bryceson YT, Bergman P, Brodin P, Smole D, Smith CIE, Norlin A-C, Campbell TM, Covill LE, Hammarström L, Pan-Hammarström Q, Abolhassani H, Mane S, Marr N, Ata M, Al Ali F, Khan T, Spaan AN, Dalgard CL, Bonfanti P, Biondi A, Tubiana S, Burdet C, Nussbaum R, Kahn-Kirby A, Snow AL, COVID Human Genetic Effort, COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-, Biobank, NIAID-USUHS COVID Study Group, Bustamante J, Puel A, Boisson-Dupuis S, Zhang S-Y, Béziat V, Lifton RP, Bastard P, Notarangelo LD, Abel L, Su HC, Jouanguy E, Amara A, Soumelis V, Cobat A, Zhang Q, Casanova J-Let al., 2021, X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19., Sci Immunol, Vol: 6

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.

Journal article

Russell CD, Fairfield CJ, Drake TM, Turtle L, Seaton RA, Wootton DG, Sigfrid L, Harrison EM, Docherty AB, de Silva T, Egan C, Pius R, Hardwick HE, Merson L, Girvan M, Dunning J, Nguyen-Van-Tam JS, Openshaw PJM, Baillie JK, Semple MG, Ho Aet al., 2021, Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: a multicentre, prospective cohort study, The Lancet Microbe, Vol: 2, Pages: E354-E365, ISSN: 2666-5247

BackgroundMicrobiological characterisation of co-infections and secondary infections in patients with COVID-19 is lacking, and antimicrobial use is high. We aimed to describe microbiologically confirmed co-infections and secondary infections, and antimicrobial use, in patients admitted to hospital with COVID-19.MethodsThe International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study is an ongoing, prospective cohort study recruiting inpatients from 260 hospitals in England, Scotland, and Wales, conducted by the ISARIC Coronavirus Clinical Characterisation Consortium. Patients with a confirmed or clinician-defined high likelihood of SARS-CoV-2 infection were eligible for inclusion in the ISARIC WHO CCP-UK study. For this specific study, we excluded patients with a recorded negative SARS-CoV-2 test result and those without a recorded outcome at 28 days after admission. Demographic, clinical, laboratory, therapeutic, and outcome data were collected using a prespecified case report form. Organisms considered clinically insignificant were excluded.FindingsWe analysed data from 48 902 patients admitted to hospital between Feb 6 and June 8, 2020. The median patient age was 74 years (IQR 59–84) and 20 786 (42·6%) of 48 765 patients were female. Microbiological investigations were recorded for 8649 (17·7%) of 48 902 patients, with clinically significant COVID-19-related respiratory or bloodstream culture results recorded for 1107 patients. 762 (70·6%) of 1080 infections were secondary, occurring more than 2 days after hospital admission. Staphylococcus aureus and Haemophilus influenzae were the most common pathogens causing respiratory co-infections (diagnosed ≤2 days after admission), with Enterobacteriaceae and S aureus most common in secondary respiratory infections. Bloodstream infections were most frequently caused by Escherichia coli a

Journal article

Drake TM, Riad AM, Fairfield CJ, Egan C, Knight SR, Pius R, Hardwick HE, Norman L, Shaw CA, McLean KA, Thompson AAR, Ho A, Swann OV, Sullivan M, Soares F, Holden KA, Merson L, Plotkin D, Sigfrid L, de Silva TI, Girvan M, Jackson C, Russell CD, Dunning J, Solomon T, Carson G, Olliaro P, Nguyen-Van-Tam JS, Turtle L, Docherty AB, Openshaw PJ, Baillie JK, Harrison EM, Semple MG, ISARIC4C investigatorset al., 2021, Characterisation of in-hospital complications associated with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol UK: a prospective, multicentre cohort study, The Lancet, Vol: 398, Pages: 223-237, ISSN: 0140-6736

BACKGROUND: COVID-19 is a multisystem disease and patients who survive might have in-hospital complications. These complications are likely to have important short-term and long-term consequences for patients, health-care utilisation, health-care system preparedness, and society amidst the ongoing COVID-19 pandemic. Our aim was to characterise the extent and effect of COVID-19 complications, particularly in those who survive, using the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK. METHODS: We did a prospective, multicentre cohort study in 302 UK health-care facilities. Adult patients aged 19 years or older, with confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 were included in the study. The primary outcome of this study was the incidence of in-hospital complications, defined as organ-specific diagnoses occurring alone or in addition to any hallmarks of COVID-19 illness. We used multilevel logistic regression and survival models to explore associations between these outcomes and in-hospital complications, age, and pre-existing comorbidities. FINDINGS: Between Jan 17 and Aug 4, 2020, 80 388 patients were included in the study. Of the patients admitted to hospital for management of COVID-19, 49·7% (36 367 of 73 197) had at least one complication. The mean age of our cohort was 71·1 years (SD 18·7), with 56·0% (41 025 of 73 197) being male and 81·0% (59 289 of 73 197) having at least one comorbidity. Males and those aged older than 60 years were most likely to have a complication (aged ≥60 years: 54·5% [16 579 of 30 416] in males and 48·2% [11 707 of 24 288] in females; aged <60 years: 48·8% [5179 of 10 609] in males and 36·6% [2814 of 7689] in females). Renal (24·3%, 17 752 of 73 197), complex respiratory (18·4%, 13 486 of 73 197), and systemic (16·3%, 11 895 of 73 197) complications were

Journal article

COVID-19 Host Genetics Initiative, 2021, Mapping the human genetic architecture of COVID-19, Nature, Vol: 600, Pages: 472-477, ISSN: 0028-0836

The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.

Journal article

Drake TM, Fairfield CJ, Pius R, Knight SR, Norman L, Girvan M, Hardwick HE, Docherty AB, Thwaites RS, Openshaw PJM, Baillie JK, Harrison EM, Semple MG, ISARIC4C Investigatorset al., 2021, Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study, The Lancet Rheumatology, Vol: 3, Pages: e498-e506, ISSN: 2665-9913

Background: Early in the pandemic it was suggested that pre-existing use of non-steroidal anti-inflammatory drugs (NSAIDs) could lead to increased disease severity in patients with COVID-19. NSAIDs are an important analgesic, particularly in those with rheumatological disease, and are widely available to the general public without prescription. Evidence from community studies, administrative data, and small studies of hospitalised patients suggest NSAIDs are not associated with poorer COVID-19 outcomes. We aimed to characterise the safety of NSAIDs and identify whether pre-existing NSAID use was associated with increased severity of COVID-19 disease. Methods: This prospective, multicentre cohort study included patients of any age admitted to hospital with a confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 between Jan 17 and Aug 10, 2020. The primary outcome was in-hospital mortality, and secondary outcomes were disease severity at presentation, admission to critical care, receipt of invasive ventilation, receipt of non-invasive ventilation, use of supplementary oxygen, and acute kidney injury. NSAID use was required to be within the 2 weeks before hospital admission. We used logistic regression to estimate the effects of NSAIDs and adjust for confounding variables. We used propensity score matching to further estimate effects of NSAIDS while accounting for covariate differences in populations. Results: Between Jan 17 and Aug 10, 2020, we enrolled 78 674 patients across 255 health-care facilities in England, Scotland, and Wales. 72 179 patients had death outcomes available for matching; 40 406 (56·2%) of 71 915 were men, 31 509 (43·8%) were women. In this cohort, 4211 (5·8%) patients were recorded as taking systemic NSAIDs before admission to hospital. Following propensity score matching, balanced groups of NSAIDs users and NSAIDs non-users were obtained (4205 patients in each group). At hospital admission, we observed no si

Journal article

Bloom CI, Drake TM, Docherty AB, Lipworth BJ, Johnston SL, Nguyen-Van-Tam JS, Carson G, Dunning J, Harrison EM, Baillie JK, Semple MG, Cullinan P, Openshaw PJM, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Filipe AD, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AY, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, Silva TD, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Fairfield CJ, Knight SR, Mclean KA, Murphy D, Shaw CA, Dalton J, Girvan M, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randal R, Pilgrim J, Prince T, Reynolds W, Ridley PM, Sales D, Shaw VE, Shears RK, Small B, Subramaniam KS, Szemiel A, Taggart A, Tanianis-Hughes J, Thomas J, Trochu E, Tonder LV, Wilcock E, Zhang JE, Flaherty L, Maziere N, Cass E, Carracedo AD, Carlucci N, Holmes A, Massey H, Adeniji K, Agranoff D, Agwuh K, Ail D, Alegria A, Angus B, Ashish A, Atkinson D, Bari S, Barlow G, Barnass S, Barrett N, Bassford C, Baxter D, Beadsworth Met al., 2021, Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK, The Lancet Respiratory Medicine, Vol: 9, Pages: 699-711, ISSN: 2213-2600

BackgroundStudies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use.MethodsWe analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma.Findings75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI

Journal article

ISARIC Clinical Characterisation Group, 2021, COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study, Infection: journal of infectious disease, Vol: 49, Pages: 899-905, ISSN: 0300-8126

BACKGROUND: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. METHODS: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. RESULTS: 'Typical' symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. INTERPRETATION: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men.

Journal article

Leclerc QJ, Fuller NM, Keogh RH, Diaz-Ordaz K, Sekula R, Semple MG, ISARIC4C Investigators, CMMID COVID-19 Working Group, Atkins KE, Procter SR, Knight GMet al., 2021, Importance of patient bed pathways and length of stay differences in predicting COVID-19 hospital bed occupancy in England., BMC Health Services Research, Vol: 21, Pages: 1-15, ISSN: 1472-6963

BACKGROUND: Predicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patient's "bed pathway" - the sequence of transfers of individual patients between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. METHODS: We obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. RESULTS: In both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. CONCLUSIONS: We identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occ

Journal article

Sancho-Shimizu V, Brodin P, Cobat A, Biggs CM, Toubiana J, Lucas CL, Henrickson SE, Belot A, Haddad E, Beland K, Pujol A, Schlüter A, Planas-Serra L, Aguilera-Albesa S, Valencia-Ramos J, Rodríguez-Palmero A, Gut M, Rivière JG, Colobran R, Soler-Palacin P, Rodriguez-Gallego C, Perez De Diego R, Flores C, Alsina L, Blazquez-Gamero D, Jordan I, Keles S, Emiroglu M, Akcan OM, Alkan G, Aytekin SE, Gul Y, Tüter Öz ŞK, Bozdemir SE, Bayhan GI, Yüksek SK, Parlakay AÖ, Gülhan B, Yahşi A, Kilic AO, Karbuz A, Erdeniz EH, Özkan EA, Orbak Z, Aydemir Ş, Celik JB, Kandemir B, Aytekin G, Kapakli H, Yarar V, Yosunkaya A, Vatansev H, Aytekin C, Torun SH, Nepesov S, Coskuner T, Sözeri B, Demirkol YK, Kasapcopur O, Yıldız M, Sevketoglu E, Hatipoğlu N, Özçelik T, Yesilbas O, Gayretli Aydin ZG, Sediva A, Klocperk A, Bloomfield M, Meyts I, Delafontaine S, Haerynck F, Hoste L, Shahrooei M, Marque L, Neves JF, Novelli G, Novelli A, Aiuti A, Casari G, Bousfiha AA, Almuhsen SZ, Sobh A, Gagro A, Bajolle F, Bonnet D, Lebon P, Lei W, Lee D, Seeleuthner Y, Zhang P, Maglorius M, Philippot Q, Pelham S, Bastard P, Zhang Q, Jouanguy E, Puel A, Herberg J, Kuijpers TW, Bellos E, Kaforou M, Menikou S, Pan-Hammarström Q, Hammarström L, Abolhassani H, Bryceson Y, Condino-Neto A, Prando C, Bando SY, Cavalcanti A, Fellay J, Blanchard-Hohner G, Mansouri D, Mahmoudi S, Boyarchuk O, Volokha A, Bondarenko A, Stepanovskiy Y, Mogensen T, van de Beek D, Andreakos E, Papadaki M, Abou Tayoun A, Halwani R, Al-Mulla F, Franco JL, Lau Y-L, Kwan M, Imai K, Okada S, Bolze A, Butte MJ, Hsieh E, Drolet BA, Arkin L, Itan Y, Maniatis T, Arditi M, Cooper M, Schmitt E, Chakravorty S, Anderson MS, Su HC, Notarangelo LD, Tangye SG, Milner JD, Levin M, Abel L, Bogunovic D, Casanova J-L, Zhang S-Yet al., 2021, SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?, Journal of Experimental Medicine, Vol: 218, Pages: 1-16, ISSN: 0022-1007

Multisystem inflammatory syndrome in children (MIS-C) emerged in April 2020 in communities with high COVID-19 rates. This new condition is heterogenous but resembles Kawasaki disease (KD), a well-known but poorly understood and clinically heterogenous pediatric inflammatory condition for which weak associations have been found with a myriad of viral illnesses. Epidemiological data clearly indicate that SARS-CoV-2 is the trigger for MIS-C, which typically occurs about 1 mo after infection. These findings support the hypothesis of viral triggers for the various forms of classic KD. We further suggest that rare inborn errors of immunity (IEIs) altering the immune response to SARS-CoV-2 may underlie the pathogenesis of MIS-C in some children. The discovery of monogenic IEIs underlying MIS-C would shed light on its pathogenesis, paving the way for a new genetic approach to classic KD, revisited as a heterogeneous collection of IEIs to viruses.

Journal article

Docherty AB, Mulholland RH, Lone NI, Cheyne CP, De Angelis D, Diaz-Ordaz K, Donegan C, Drake TM, Dunning J, Funk S, García-Fiñana M, Girvan M, Hardwick HE, Harrison J, Ho A, Hughes DM, Keogh RH, Kirwan PD, Leeming G, Nguyen Van-Tam JS, Pius R, Russell CD, Spencer RG, Tom BD, Turtle L, Openshaw PJ, Baillie JK, Harrison EM, Semple MG, ISARIC4C Investigatorset al., 2021, Changes in in-hospital mortality in the first wave of COVID-19: a multicentre prospective observational cohort study using the WHO Clinical Characterisation Protocol UK, The Lancet Respiratory Medicine, Vol: 9, Pages: 773-785, ISSN: 2213-2600

BACKGROUND: Mortality rates in hospitalised patients with COVID-19 in the UK appeared to decline during the first wave of the pandemic. We aimed to quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. METHODS: In this multicentre prospective observational cohort study, the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK recruited a prospective cohort of patients with COVID-19 admitted to 247 acute hospitals in England, Scotland, and Wales during the first wave of the pandemic (between March 9 and Aug 2, 2020). We included all patients aged 18 years and older with clinical signs and symptoms of COVID-19 or confirmed COVID-19 (by RT-PCR test) from assumed community-acquired infection. We did a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and in-hospital mortality, adjusting for confounders (demographics, comorbidities, and severity of illness) and quantifying potential mediators (level of respiratory support and steroid treatment). The primary outcome was weekly in-hospital mortality at 28 days, defined as the proportion of patients who had died within 28 days of admission of all patients admitted in the observed week, and it was assessed in all patients with an outcome. This study is registered with the ISRCTN Registry, ISRCTN66726260. FINDINGS: Between March 9, and Aug 2, 2020, we recruited 80 713 patients, of whom 63 972 were eligible and included in the study. Unadjusted weekly in-hospital mortality declined from 32·3% (95% CI 31·8-32·7) in March 9 to April 26, 2020, to 16·4% (15·0-17·8) in June 15 to Aug 2, 2020. Reductions in mortality were observed in all age groups, in all ethnic groups, for both sexes, and in patients with and without comorbidities. After adjustment, there was a 32% reduction in

Journal article

Gupta RK, Harrison EM, Ho A, Docherty AB, Knight SR, van Smeden M, Abubakar I, Lipman M, Quartagno M, Pius R, Buchan I, Carson G, Drake TM, Dunning J, Fairfield CJ, Gamble C, Green CA, Halpin S, Hardwick HE, Holden KA, Horby PW, Jackson C, Mclean KA, Merson L, Nguyen-Van-Tam JS, Norman L, Olliaro PL, Pritchard MG, Russell CD, Scott-Brown J, Shaw CA, Sheikh A, Solomon T, Sudlow C, Swann OV, Turtle L, Openshaw PJM, Baillie JK, Semple MG, Noursadeghi M, Baillie JK, Semple MG, Openshaw PJM, Carson G, Alex B, Bach B, Barclay WS, Bogaert D, Chand M, Cooke GS, Docherty AB, Dunning J, Filipe ADS, Fletcher T, Green CA, Harrison EM, Hiscox JA, Ho AYW, Horby PW, Ijaz S, Khoo S, Klenerman P, Law A, Lim WS, Mentzer AJ, Merson L, Meynert AM, Noursadeghi M, Moore SC, Palmarini M, Paxton WA, Pollakis G, Price N, Rambaut A, Robertson DL, Russell CD, Sancho-Shimizu V, Scott JT, de Silva T, Sigfrid L, Solomon T, Sriskandan S, Stuart D, Summers C, Tedder RS, Thomson EC, Thompson AAR, Thwaites RS, Turtle LCW, Zambon M, Hardwick H, Donohue C, Lyons R, Griffiths F, Oosthuyzen W, Norman L, Pius R, Drake TM, Fairfield CJ, Knight S, Mclean KA, Murphy D, Shaw CA, Dalton J, Lee J, Plotkin D, Girvan M, Mullaney S, Petersen C, Saviciute E, Roberts S, Harrison J, Marsh L, Connor M, Halpin S, Jackson C, Gamble C, Leeming G, Law A, Wham M, Clohisey S, Hendry R, Scott-Brown J, Greenhalf W, Shaw V, McDonald S, Keating S, Ahmed KA, Armstrong JA, Ashworth M, Asiimwe IG, Bakshi S, Barlow SL, Booth L, Brennan B, Bullock K, Catterall BWA, Clark JJ, Clarke EA, Cole S, Cooper L, Cox H, Davis C, Dincarslan O, Dunn C, Dyer P, Elliott A, Evans A, Finch L, Fisher LWS, Foster T, Garcia-Dorival I, Greenhalf W, Gunning P, Hartley C, Ho A, Jensen RL, Jones CB, Jones TR, Khandaker S, King K, Kiy RT, Koukorava C, Lake A, Lant S, Latawiec D, Lavelle-Langham L, Lefteri D, Lett L, Livoti LA, Mancini M, McDonald S, McEvoy L, McLauchlan J, Metelmann S, Miah NS, Middleton J, Mitchell J, Moore SC, Murphy EG, Penrice-Randalet al., 2021, Development and validation of the ISARIC 4C Deterioration model for adults hospitalised with COVID-19: a prospective cohort study, The Lancet Respiratory Medicine, Vol: 9, Pages: 349-359, ISSN: 2213-2600

BackgroundPrognostic models to predict the risk of clinical deterioration in acute COVID-19 cases are urgently required to inform clinical management decisions.MethodsWe developed and validated a multivariable logistic regression model for in-hospital clinical deterioration (defined as any requirement of ventilatory support or critical care, or death) among consecutively hospitalised adults with highly suspected or confirmed COVID-19 who were prospectively recruited to the International Severe Acute Respiratory and Emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC4C) study across 260 hospitals in England, Scotland, and Wales. Candidate predictors that were specified a priori were considered for inclusion in the model on the basis of previous prognostic scores and emerging literature describing routinely measured biomarkers associated with COVID-19 prognosis. We used internal–external cross-validation to evaluate discrimination, calibration, and clinical utility across eight National Health Service (NHS) regions in the development cohort. We further validated the final model in held-out data from an additional NHS region (London).Findings74 944 participants (recruited between Feb 6 and Aug 26, 2020) were included, of whom 31 924 (43·2%) of 73 948 with available outcomes met the composite clinical deterioration outcome. In internal–external cross-validation in the development cohort of 66 705 participants, the selected model (comprising 11 predictors routinely measured at the point of hospital admission) showed consistent discrimination, calibration, and clinical utility across all eight NHS regions. In held-out data from London (n=8239), the model showed a similarly consistent performance (C-statistic 0·77 [95% CI 0·76 to 0·78]; calibration-in-the-large 0·00 [–0·05 to 0·05]); calibration slope 0·96 [0·91 to 1·01]), and greater net benefit than

Journal article

Yates T, Zaccardi F, Islam N, Razieh C, Gillies CL, Lawson CA, Chudasama Y, Rowlands A, Davies MJ, Docherty AB, Openshaw PJ, Baillie JK, Semple MG, ISARIC4C investigators, Khunti Ket al., 2021, Obesity, ethnicity and risk of critical care, mechanical ventilation and mortality in patients admitted to hospital with COVID-19: Analysis of the ISARIC CCP-UK cohort., Obesity (Silver Spring, Md.), Vol: 29, Pages: 1223-1230, ISSN: 1071-7323

OBJECTIVE: To investigate the association of obesity with in-hospital COVID-19 outcomes in different ethnic groups. METHODS: Patients admitted to hospital with COVID-19 in the United Kingdom through the Clinical Characterisation Protocol UK (CCP-UK) developed by the International Severe Acute Respiratory and emerging Infections Consortium (ISARIC) were included from 6th February to 12th October 2020. Ethnicity was classified as: white, South Asian, black and other minority ethnic groups. Outcomes were admission to critical care, mechanical ventilation and in-hospital mortality, adjusted for age, sex and chronic diseases. RESULTS: 54,254 (age = 76 years; 45.0% women) white, 3,728 (57 years; 41.1%) South Asian, 2,523 (58 years; 44.9%) black and 5,427 (61 years; 40.8%) other ethnicities were included. Obesity was associated with all outcomes in all ethnic groups, with associations strongest for black ethnicities. When stratified by ethnicity and obesity status, the OR for admission to critical care, mechanical ventilation and mortality in black ethnicities with obesity were 3.91 (3.13, 4.88), 5.03 (3.94, 6.63), 1.93 (1.49, 2.51) respectively, compared to white ethnicities without obesity. CONCLUSIONS: Obesity was associated with an elevated risk of in-hospital COVID-19 outcomes in all ethnic groups, with associations strongest in black ethnicities.

Journal article

Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, Walker S, Parkinson N, Fourman MH, Russell CD, Furniss J, Richmond A, Gountouna E, Wrobel N, Harrison D, Wang B, Wu Y, Meynert A, Griffiths F, Oosthuyzen W, Kousathanas A, Moutsianas L, Yang Z, Zhai R, Zheng C, Grimes G, Beale R, Millar J, Shih B, Keating S, Zechner M, Haley C, Porteous DJ, Hayward C, Yang J, Knight J, Summers C, Shankar-Hari M, Klenerman P, Turtle L, Ho A, Moore SC, Hinds C, Horby P, Nichol A, Maslove D, Ling L, McAuley D, Montgomery H, Walsh T, Pereira A, Renieri A, GenOMICC Investigators, ISARICC Investigators, COVID-19 Human Genetics Initiative, 23andMe Investigators, BRACOVID Investigators, Gen-COVID Investigators, Shen X, Ponting CP, Fawkes A, Tenesa A, Caulfield M, Scott R, Rowan K, Murphy L, Openshaw PJM, Semple MG, Law A, Vitart V, Wilson JF, Baillie JKet al., 2021, Genetic mechanisms of critical illness in Covid-19, Nature, Vol: 591, Pages: 92-98, ISSN: 0028-0836

Host-mediated lung inflammation is present,1 and drives mortality,2 in critical illness caused by Covid-19. Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development.3 Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study(GWAS) in 2244 critically ill Covid-19 patients from 208 UK intensive care units (ICUs). We identify and replicate novel genome-wide significant associations, on chr12q24.13 (rs10735079, p=1.65 [Formula: see text] 10-8) in a gene cluster encoding antiviral restriction enzyme activators (OAS1, OAS2, OAS3), on chr19p13.2 (rs2109069, p=2.3 [Formula: see text] 10-12) near the gene encoding tyrosine kinase 2 (TYK2), on chr19p13.3 (rs2109069, p=3.98 [Formula: see text] 10-12) within the gene encoding dipeptidyl peptidase 9 (DPP9), and on chr21q22.1 (rs2236757, p=4.99 [Formula: see text] 10-8) in the interferon receptor gene IFNAR2. We identify potential targets for repurposing of licensed medications: using Mendelian randomisation we found evidence in support of a causal link from low expression of IFNAR2, and high expression of TYK2, to life-threatening disease; transcriptome-wide association in lung tissue revealed that high expression of the monocyte/macrophage chemotactic receptor CCR2 is associated with severe Covid-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms, and mediators of inflammatory organ damage in Covid-19. Both mechanisms may be amenable to targeted treatment with existing drugs. Large-scale randomised clinical trials will be essential before any change to clinical practice.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: limit=30&id=00745528&person=true&page=2&respub-action=search.html