Summary
Brain plasticity and Repair
We study the regulation of neural network connectivity and function in the neocortex, a brain region affected in numerous developmental and degenerative diseases as well as acute injuries, which are incurable to date. Specifically, we are trying to understand basic principles of synaptic development and plasticity by visualizing and manipulating both rodent and, more recently, human cortical circuits directly in the living brain. We believe this knowledge is ultimately important to enhance the brain regenerative potential and understand "what goes wrong" in the numerous conditions affecting synapses, collectively called synaptopathies, which include neuropsychiatric conditions such as autism and schizophrenia as well as neurodegenerative ones such as Alzheimer's disease. The team uses a multidisciplinary approach, at the interface between neuroscience, genetics, human stem cell and tissue biology and high-resolution optical imaging. For more information visit our web page www.DePaolaLab.com.
(A) Cranial window overlying the somatosensory cortex. (B) Vasculature. (C) Same area as in B imaged with 2-photon microscopy. (D) Synaptic loss on lesioned cortical layer 6 axons. (E) Synaptic stability on lesioned cortical layer 2/3 axons. Arrows indicate synapses that are stable (white), gained (green) or lost (red). Scale bar in D, E: 10 μm. Ref. Holtmaat et al. Nature Protocols 2009 and Canty et al. Journal of Neuroscience 2013.
Below a 3D rendering of a regenerating axon (light blue) making a new connection on a dendrite (grey) in the adult brain (from Canty et al. Nature Communication 2013)
Selected Publications
Journal Articles
Canty A, Jackson J, Huang L, et al. , 2020, In vivo imaging of injured cortical axons reveals a rapid onset form of Wallerian degeneration, BMC Biology, ISSN:1741-7007
Real R, Peter M, Trabalza A, et al. , 2018, In vivo modeling of human neuron dynamics and Down syndrome., Science, Vol:362
Grillo FW, West L, De Paola V, 2015, Removing synaptic breaks on learning, Nature Neuroscience, Vol:18, ISSN:1546-1726, Pages:1062-1064
Canty AJ, Teles-Grilo Ruivo LM, Nesarajah C, et al. , 2013, Synaptic elimination and protection after minimal injury depend on cell type and their prelesion structural dynamics in the adult cerebral cortex., J Neurosci, Vol:33, Pages:10374-10383
Allegra Mascaro, Cesare, Sacconi, et al. , 2013, In vivo single branch axotomy induces GAP-43 dependent sprouting and synaptic remodeling in cerebellar cortex, Proceedings of the National Academy of Sciences of the United States of America
Canty AJ, Huang L, Jackson JS, et al. , 2013, In-vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits, Nature Communications, Vol:4, ISSN:2041-1723
Grillo FW, Song S, Teles-Grilo Ruivo LM, et al. , 2013, Increased axonal bouton dynamics in the aging mouse cortex., Proc Natl Acad Sci U S A, Vol:110, Pages:E1514-E1523
Canty AJ, De Paola V, 2011, Axonal Reconstructions Going Live, Neuroinformatics, Vol:9, ISSN:1539-2791, Pages:129-131
Holtmaat A, Bonhoeffer T, Chow DK, et al. , 2009, Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window., Nat Protoc, Vol:4, Pages:1128-1144
De Paola V, Holtmaat A, Knott G, et al. , 2006, Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex, Neuron, Vol:49, ISSN:0896-6273, Pages:861-875
Portera-Cailliau C, Weimer RM, De Paola V, et al. , 2005, Diverse modes of axon elaboration in the developing neocortex, PLOS Biology, Vol:3, ISSN:1545-7885, Pages:1473-1487
De Paola V, Arber S, Caroni P, 2003, AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks, Nature Neuroscience, Vol:6, ISSN:1097-6256, Pages:491-500
Livet J, Sigrist M, Stroebel S, et al. , 2002, ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools, Neuron, Vol:35, ISSN:0896-6273, Pages:877-892