Imperial College London

ProfessorWendyBarclay

Faculty of MedicineDepartment of Infectious Disease

Action Medical Research Chair Virology. Head of Department
 
 
 
//

Contact

 

+44 (0)20 7594 5035w.barclay

 
 
//

Location

 

416Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

284 results found

Eales O, Wang H, Haw D, Ainslie KEC, Walters C, Atchison C, Cooke G, Barclay W, Ward H, Darzi A, Ashby D, Donnelly C, Elliott P, Riley Set al., 2022, Trends in SARS-CoV-2 infection prevalence during England’s roadmap out of lockdown, January to July 2021, PLoS Computational Biology, ISSN: 1553-734X

Journal article

Whitaker M, Elliott J, Bodinier B, Barclay W, Ward H, Cooke G, Donnelly C, Chadeau M, Elliott Pet al., 2022, Variant-specific symptoms of COVID-19 in a study of 1,542,510 adults in England, Nature Communications, ISSN: 2041-1723

Infection with SARS-CoV-2 virus is associated with a wide range of symptoms. The REal-time Assessment of Community Transmission -1 (REACT-1) study monitored the spread and clinical manifestation of SARS-CoV-2 among random samples of the population in England from 1 May 2020 to 31 March 2022. We show changing symptom profiles associated with the different variants over that period, with lower reporting of loss of sense of smell or taste for Omicron compared to previous variants, and higher reporting of cold-like and influenza-like symptoms, controlling for vaccination status. Contrary to the perception that recent variants have become successively milder, Omicron BA.2 was associated with reporting more symptoms, with greater disruption to daily activities, than BA.1. With restrictions lifted and routine testing limited in many countries, monitoring the changing symptom profiles associated with SARS-CoV-2 infection and effects on daily activities will become increasingly important.

Journal article

Mosscrop L, Watber P, Elliot P, Cooke G, Barclay W, Freemont PS, Rosadas C, Taylor GPet al., 2022, Evaluation of the impact of pre-analytical conditions on sample stability for the detection of SARS-CoV-2 RNA, JOURNAL OF VIROLOGICAL METHODS, Vol: 309, ISSN: 0166-0934

Journal article

Cordery R, Reeves L, Zhou J, Rowan A, Watber P, Rosadas C, Crone M, Storch M, Freemont P, Mosscrop L, Cowley A, Zelent G, Bisset K, Le Blond H, Regmi S, Buckingham C, Junaideen R, Abdulla N, Eliahoo J, Mindlin M, Lamagni T, Barclay W, Taylor GP, Sriskandan Set al., 2022, Transmission of SARS-CoV-2 by children to contacts in schools and households: a prospective cohort and environmental sampling study in London, The Lancet Microbe, Vol: 3, Pages: e814-e823, ISSN: 2666-5247

Background: Assessing transmission of SARS-CoV-2 by children in schools is of critical importance to inform public health action. We assessed frequency of acquisition of SARS-CoV-2 by contacts of pupils with COVID-19 in schools and households, and quantified SARS-CoV-2 shed into air and onto fomites in both settings.Methods: Incidents involving exposure to at least one index pupil with COVID-19 in 8 schools were identified between October 2020-July 2021 (prevailing variants, original, alpha and delta). Weekly PCR testing for SARS-CoV-2 was undertaken on immediate classroom contacts (the “bubble”), non-bubble school contacts, and household contacts of index pupils, supported by genome sequencing, and on surface and air samples from school and home environments.Findings: Secondary transmission of SARS-CoV-2 was not detected in 28 bubble contacts, representing 10 bubble classes (participation rate 8.8%, IQR 4.6-15.3%). Across 8 non-bubble classes, 3/62 pupils tested positive but these were unrelated to the original index case (participation rate 22.5%, IQR 9.7-32.3%). All three were asymptomatic and tested positive in one setting on the same day. In contrast, secondary transmission to previously-negative household contacts from infected index pupils was 17.1% (6/35) rising to 27.7% (13/47) when considering all potentialinfections in household contacts. Environmental contamination with SARS-CoV-2 was rare in schools; fomite SARS-CoV-2 was identified in 4/189 (2.1%) samples in bubble classrooms, 2/127 (1.6%) samples in non-bubble classrooms, and 5/130 (3.8%) samples in washrooms. This contrasted with fomites in households, where SARS-CoV-2 was identified in 60/248 (24.2%) bedroom samples, 66/241 (27.4%) communal room samples, and 21/188 (11.2%) bathroom samples. Air sampling identified SARS-CoV-2 RNA in just 1/68 (1.5%) of school air samples, compared with 21/85 (24.7%) of air samples taken in homes.Interpretation: There was no evidence of large scale SARS-Co

Journal article

Ogger PP, Martín MG, Michalaki C, Zhou J, Brown JC, Du Y, Miah KM, Habib O, Hyde SC, Gill DR, Barclay WS, Johansson Cet al., 2022, Type I interferon signaling deficiency results in dysregulated innate immune responses to SARS-CoV-2 in mice, European Journal of Immunology, Vol: 52, Pages: 1768-1775, ISSN: 0014-2980

SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defence and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN-signalling-deficient (Ifnar1-/- ) mice, to study type I IFN signalling deficiency and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signaling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as a reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection. This article is protected by copyright. All rights reserved.

Journal article

Hakki S, Zhou J, Jonnerby J, Singanayagam A, Barnett JL, Madon KJ, Koycheva A, Kelly C, Houston H, Nevin S, Fenn J, Kundu R, Crone MA, Pillay TD, Ahmad S, Derqui-Fernandez N, Conibear E, Freemont PS, Taylor GP, Ferguson N, Zambon M, Barclay WS, Dunning J, Lalvani A, ATACCC study investigatorset al., 2022, Onset and window of SARS-CoV-2 infectiousness and temporal correlation with symptom onset: a prospective, longitudinal, community cohort study., Lancet Respir Med, Vol: 10, Pages: 1061-1073

BACKGROUND: Knowledge of the window of SARS-CoV-2 infectiousness is crucial in developing policies to curb transmission. Mathematical modelling based on scarce empirical evidence and key assumptions has driven isolation and testing policy, but real-world data are needed. We aimed to characterise infectiousness across the full course of infection in a real-world community setting. METHODS: The Assessment of Transmission and Contagiousness of COVID-19 in Contacts (ATACCC) study was a UK prospective, longitudinal, community cohort of contacts of newly diagnosed, PCR-confirmed SARS-CoV-2 index cases. Household and non-household exposed contacts aged 5 years or older were eligible for recruitment if they could provide informed consent and agree to self-swabbing of the upper respiratory tract. The primary objective was to define the window of SARS-CoV-2 infectiousness and its temporal correlation with symptom onset. We quantified viral RNA load by RT-PCR and infectious viral shedding by enumerating cultivable virus daily across the course of infection. Participants completed a daily diary to track the emergence of symptoms. Outcomes were assessed with empirical data and a phenomenological Bayesian hierarchical model. FINDINGS: Between Sept 13, 2020, and March 31, 2021, we enrolled 393 contacts from 327 households (the SARS-CoV-2 pre-alpha and alpha variant waves); and between May 24, 2021, and Oct 28, 2021, we enrolled 345 contacts from 215 households (the delta variant wave). 173 of these 738 contacts were PCR positive for more than one timepoint, 57 of which were at the start of infection and comprised the final study population. The onset and end of infectious viral shedding were captured in 42 cases and the median duration of infectiousness was 5 (IQR 3-7) days. Although 24 (63%) of 38 cases had PCR-detectable virus before symptom onset, only seven (20%) of 35 shed infectious virus presymptomatically. Symptom onset was a median of 3 days before both peak viral RNA and

Journal article

Penn R, Tregoning J, Flight K, Frise R, Baillon L, Goldhill D, Johansson C, Barclay Wet al., 2022, Levels of Influenza defective viral genomes determine pathogenesis in the BALB/c mouse model, Journal of Virology, ISSN: 0022-538X

Defective viral genomes (DVGs), which are generated by the viral polymerase in error during RNA replication, can trigger innate immunity and are implicated in altering the clinical outcome of infection. Here, we investigated the impact of DVGs on innate immunity and pathogenicity in a BALB/c mouse model of influenza virus infection. We generated stocks of influenza viruses containing the internal genes of an H5N1 virus that contain different levels of DVGs (indicated by different genome to PFU ratios). In lung epithelial cells, the high DVG stock was immunostimulatory at early time points post infection. DVGs were amplified during virus replication in myeloid immune cells and triggered pro-inflammatory cytokine production. In the mouse model, infection with the different virus stocks produced divergent outcomes. The high DVG stock induced an early type I IFN resonse that limited viral replication in the lungs resulting in minimal weight loss. In contrast, the virus stock with low levels of DVGs replicated to hightitres and amplified DVGs over time resulting in elevated pro-inflammatory cytokines accompanied by rapid weight loss and increased morbidity and mortality. Our results suggest that the timing and levels of immunostimulatory DVGs generated duringinfection contribute to H5N1 pathogenesis.

Journal article

Chadeau-Hyam M, Tang D, Eales O, Bodinier B, Wang H, Jonnerby J, Whitaker M, Elliott J, Haw D, Walters CE, Atchison C, Diggle PJ, Page AJ, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Donnelly CA, Elliott Pet al., 2022, Omicron SARS-CoV-2 epidemic in England during February 2022: A series of cross-sectional community surveys, The Lancet Regional Health Europe, Vol: 21, Pages: 1-11, ISSN: 2666-7762

BackgroundThe Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage.MethodsIn the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022).FindingsWe estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76–3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91–0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00–1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0–0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1047, 64.8% (62.4–67.2) were BA.1; N=568, 35.2% (32.8–37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34–0.41). The highest proportion of BA.2 among positives was found in London.InterpretationIn February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required.FundingDepartment of Health and Social Care, England.

Journal article

Siggins MK, Davies K, Fellows R, Thwaites RS, Baillie JK, Semple MG, Openshaw PJM, Zelek WM, Harris CL, Morgan BP, ISARIC4C Investigatorset al., 2022, Alternative pathway dysregulation in tissues drives sustained complement activation and predicts outcome across the disease course in COVID-19, Immunology, ISSN: 0019-2805

Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in an COVID-19 to date, a comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalised COVID-19 patients collected across the hospitalisation period as part of the UK ISARIC4C study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to heathy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.

Journal article

Najer A, Blight J, Ducker CB, Gasbarri M, Brown JC, Che J, Hogset H, Saunders C, Ojansivu M, Lu Z, Lin Y, Yeow J, Rifaie Graham O, Potter M, Tonkin R, Penders J, Doutch JJ, Georgiadou A, Barriga HMG, Holme MN, Cunnington AJ, Bugeon L, Dallman MJ, Barclay WS, Stellacci F, Baum J, Stevens MMet al., 2022, Potent virustatic polymer-lipid nanomimics block viral entry and inhibit malaria parasites in vivo, ACS Central Science, Vol: 8, Pages: 1238-1257, ISSN: 2374-7943

Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer–lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.

Journal article

Hill V, Du Plessis L, Peacock TP, Aggarwal D, Colquhoun R, Carabelli AM, Ellaby N, Gallagher E, Groves N, Jackson B, McCrone JT, O'Toole A, Price A, Sanderson T, Scher E, Southgate J, Volz E, Barclay WS, Barrett JC, Chand M, Connor T, Goodfellow I, Gupta RK, Harrison EM, Loman N, Myers R, Robertson DL, Pybus OG, Rambaut Aet al., 2022, The origins and molecular evolution of SARS-CoV-2 lineage B.1.1.7 in the UK, VIRUS EVOLUTION, Vol: 8

Journal article

Eales O, Ainslie KEC, Walters CE, Wang H, Atchison C, Ashby D, Donnelly CA, Cooke G, Barclay W, Ward H, Darzi A, Elliott P, Riley Set al., 2022, Appropriately smoothing prevalence data to inform estimates of growth rate and reproduction number, Epidemics: the journal of infectious disease dynamics, Vol: 40, ISSN: 1755-4365

The time-varying reproduction number () can change rapidly over the course of a pandemic due to changing restrictions, behaviours, and levels of population immunity. Many methods exist that allow the estimation of from case data. However, these are not easily adapted to point prevalence data nor can they infer across periods of missing data. We developed a Bayesian P-spline model suitable for fitting to a wide range of epidemic time-series, including point-prevalence data. We demonstrate the utility of the model by fitting to periodic daily SARS-CoV-2 swab-positivity data in England from the first 7 rounds (May 2020–December 2020) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Estimates of over the period of two subsequent rounds (6–8 weeks) and single rounds (2–3 weeks) inferred using the Bayesian P-spline model were broadly consistent with estimates from a simple exponential model, with overlapping credible intervals. However, there were sometimes substantial differences in point estimates. The Bayesian P-spline model was further able to infer changes in over shorter periods tracking a temporary increase above one during late-May 2020, a gradual increase in over the summer of 2020 as restrictions were eased, and a reduction in during England’s second national lockdown followed by an increase as the Alpha variant surged. The model is robust against both under-fitting and over-fitting and is able to interpolate between periods of available data; it is a particularly versatile model when growth rate can change over small timescales, as in the current SARS-CoV-2 pandemic. This work highlights the importance of pairing robust methods with representative samples to track pandemics.

Journal article

McCrone JT, Hill V, Bajaj S, Pena RE, Lambert BC, Inward R, Bhatt S, Volz E, Ruis C, Dellicour S, Baele G, Zarebski AE, Sadilek A, Wu N, Schneider A, Ji X, Raghwani J, Ben J, Colquhoun R, Peacock TP, Twohig K, Thelwall S, Dabrera G, Myers R, Faria NR, Huber C, Bogoch II, Khan K, du Plessis L, Barrett JC, Aanensen DM, Barclay WS, Chand M, Connor T, Loman NJ, Suchard MA, Pybus OG, Rambaut A, Kraemer MUGet al., 2022, Context-specific emergence and growth of the SARS-CoV-2 Delta variant, NATURE, Vol: 610, Pages: 154-+, ISSN: 0028-0836

Journal article

Elliott P, Eales O, Bodinier B, Tang D, Wang H, Jonnerby LJA, Haw D, Elliott J, Whitaker M, Walters C, Atchison C, Diggle P, Page A, Trotter A, Ashby D, Barclay W, Taylor G, Ward H, Darzi A, Cooke G, Chadeau M, Donnelly Cet al., 2022, Dynamics of a national Omicron SARS-CoV-2 epidemic during January 2022 in England, Nature Communications, Vol: 13, ISSN: 2041-1723

Rapid transmission of the SARS-CoV-2 Omicron variant has led to record-breaking case incidence rates around the world. Since May 2020, the REal-time Assessment of Community Transmission-1 (REACT-1) study tracked the spread of SARS-CoV-2 infection in England through RT-PCR of self-administered throat and nose swabs from randomly-selected participants aged 5 years and over. In January 2022, we found an overall weighted prevalence of 4.41% (n=102,174), three-fold higher than in November to December 2021; we sequenced 2,374 (99.2%) Omicron infections (19 BA.2), and only 19 (0.79%) Delta, with a growth rate advantage for BA.2 compared to BA.1 or BA.1.1. Prevalence was decreasing overall (reproduction number R=0.95, 95% credible interval [CrI], 0.93, 0.97), but increasing in children aged 5 to 17 years (R=1.13, 95% CrI, 1.09, 1.18). In England during January 2022, we observed unprecedented levels of SARS-CoV-2 infection, especially among children, driven by almost complete replacement of Delta by Omicron.

Journal article

Atchison C, Moshe M, Brown J, Whitaker M, Wong N, Bharath A, Mckendry R, Darzi A, Ashby D, Donnelly C, Riley S, Elliott P, Barclay W, Cooke G, Ward Het al., 2022, Validity of self-testing at home with rapid SARS-CoV-2 antibody detection by lateral flow immunoassay, Clinical Infectious Diseases, ISSN: 1058-4838

Background: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based ELISA and live virus neutralisation. Methods: In July 2021, 3758 participants performed, at home, a self-administered LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of IgG antibodies using the Roche Elecsys® Anti-SARS-CoV-2 assay. We compared the self-reported LFIA result to the quantitative Roche assay and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralisation. Results: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on Roche (using the manufacturer reference standard threshold for positivity of 0.8 U ml−1). Live virus neutralisation was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% CI 71.8, 84.6), 142/155 (91.6%; 86.1, 95.5) with ALFA, and 169 (100%; 97.8, 100.0) with Roche. There were 81 samples with no detectable virus neutralisation; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI 46.5, 68.9), 34/75 (45.3%; 33.8, 57.3) with ALFA, and 0/81 (0%; 0.0, 4.5) with Roche. Conclusions: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ELISA with virus neutralisation.

Journal article

Eales O, Martins LDO, Page AJ, Wang H, Bodinier B, Tang D, Haw D, Jonnerby J, Atchison C, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Elliott P, Donnelly CA, Chadeau-Hyam Met al., 2022, Dynamics of competing SARS-CoV-2 variants during the Omicron epidemic in England, Nature Communications, Vol: 13, ISSN: 2041-1723

The SARS-CoV-2 pandemic has been characterised by the regular emergence of genomic variants. With natural and vaccine-induced population immunity at high levels, evolutionary pressure favours variants better able to evade SARS-CoV-2 neutralising antibodies. The Omicron variant (first detected in November 2021) exhibited a high degree of immune evasion, leading to increased infection rates worldwide. However, estimates of the magnitude of this Omicron wave have often relied on routine testing data, which are prone to several biases. Using data from the REal-time Assessment of Community Transmission-1 (REACT-1) study, a series of cross-sectional surveys assessing prevalence of SARS-CoV-2 infection in England, we estimated the dynamics of England’s Omicron wave (from 9 September 2021 to 1 March 2022). We estimate an initial peak in national Omicron prevalence of 6.89% (5.34%, 10.61%) during January 2022, followed by a resurgence in SARS-CoV-2 infections as the more transmissible Omicron sub-lineage, BA.2 replaced BA.1 and BA.1.1. Assuming the emergence of further distinct variants, intermittent epidemics of similar magnitudes may become the ‘new normal’.

Journal article

Eales O, Wang H, Bodinier B, Haw D, Jonnerby J, Atchison C, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Chadeau M, Donnelly C, Elliott Pet al., 2022, SARS-CoV-2 lineage dynamics in England from September to November 2021: high diversity of Delta sub-lineages and increased transmissibility of AY.4.2, BMC Infectious Diseases, Vol: 22, ISSN: 1471-2334

Background: Since the emergence of SARS-CoV-2, evolutionary pressure has driven large increases in the transmissibility of the virus. However, with increasing levels of immunity through vaccination and natural infection the evolutionary pressure will switch towards immune escape. Genomic surveillance in regions of high immunity is crucial in detecting emerging variants that can more successfully navigate the immune landscape. Methods: We present phylogenetic relationships and lineage dynamics within England (a country with high levels of immunity), as inferred from a random community sample of individuals who provided a self-administered throat and nose swab for rt-PCR testing as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. During round 14 (9 September - 27 September 2021) and 15 (19 October - 5 November 2021) lineages were determined for 1322 positive individuals, with 27.1% of those which reported their symptom status reporting no symptoms in the previous month.Results: We identified 44 unique lineages, all of which were Delta or Delta sub-lineages, and found a reduction in their mutation rate over the study period. The proportion of the Delta sub-lineage AY.4.2 was increasing, with a reproduction number 15% (95% CI, 8%-23%) greater than the most prevalent lineage, AY.4. Further, AY.4.2 was less associated with the most predictive COVID-19 symptoms (p = 0.029) and had a reduced mutation rate (p = 0.050). Both AY.4.2 and AY.4 were found to be geographically clustered in September but this was no longer the case by late October/early November, with only the lineage AY.6 exhibiting clustering towards the South of England.Conclusions: As SARS-CoV-2 moves towards endemicity and new variants emerge, genomic data obtained from random community samples can augment routine surveillance data without the potential biases introduced due to higher sampling rates of symptomatic individuals.

Journal article

Peacock T, Goldhill D, Zhou J, Baillon L, Frise R, Swann O, Kugathasan R, Penn R, Brown J, Sanchez-David R, Braga L, Williamson MK, Hassard J, Staller E, Hanley B, Osborn M, Giacca M, Davidson A, Matthews D, Barclay Wet al., 2022, The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells, Publisher: bioXriv

SARS-CoV-2 enters cells via its spike glycoprotein which must be cleaved sequentially at the S1/S2, then the S2’ cleavage sites (CS) to mediate membrane fusion. SARS-CoV-2 has a unique polybasic insertion at the S1/S2 CS, which we demonstrate can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture adapted SARS-CoV-2 virus with a S1/S2 deletion, we show that the polybasic insertion is selected for in lung cells and primary human airway epithelial cultures but selected against in Vero E6, a cell line used for passaging SARS-CoV-2. We find this selective advantage depends on expression of the cell surface protease, TMPRSS2, that allows virus entry independent of endosomes thus avoiding antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin CS was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals. Thus, the polybasic CS is a key determinant for efficient SARS-CoV-2 transmission.

Working paper

Stolting H, Baillon L, Frise R, Bonner K, Hewitt RJ, Molyneaux PL, Gore ML, Barclay WS, Saglani S, Lloyd CMet al., 2022, Distinct airway epithelial immune responses after infection with SARS-CoV-2 compared to H1N1, Mucosal Immunology, Vol: 15, Pages: 952-963, ISSN: 1933-0219

Children are less likely than adults to suffer severe symptoms when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), while influenza A H1N1 severity is comparable across ages except for the very young or elderly. Airway epithelial cells play a vital role in the early defence against viruses via their barrier and immune functions. We investigated viral replication and immune responses in SARS-CoV-2-infected bronchial epithelial cells from healthy paediatric (n = 6; 2.5–5.6 years old) and adult (n = 4; 47–63 years old) subjects and compared cellular responses following infection with SARS-CoV-2 or Influenza A H1N1. While infection with either virus triggered robust transcriptional interferon responses, including induction of type I (IFNB1) and type III (IFNL1) interferons, markedly lower levels of interferons and inflammatory proteins (IL-6, IL-8) were released following SARS-CoV-2 compared to H1N1 infection. Only H1N1 infection caused disruption of the epithelial layer. Interestingly, H1N1 infection resulted in sustained upregulation of SARS-CoV-2 entry factors FURIN and NRP1. We did not find any differences in the epithelial response to SARS-CoV-2 infection between paediatric and adult cells. Overall, SARS-CoV-2 had diminished potential to replicate, affect morphology and evoke immune responses in bronchial epithelial cells compared to H1N1.

Journal article

Newman J, Thakur N, Peacock TP, Bialy D, Elrefaey AME, Bogaardt C, Horton DL, Ho S, Kankeyan T, Carr C, Hoschler K, Barclay WS, Amirthalingam G, Brown KE, Charleston B, Bailey Det al., 2022, Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2, NATURE MICROBIOLOGY, Vol: 7, Pages: 1180-+, ISSN: 2058-5276

Journal article

Eales O, de Oliveira Martins L, Page A, Wang H, Bodinier B, Tang D, Haw D, Jonnerby LJA, Atchison C, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Riley S, Elliott P, Donnelly C, Chadeau Met al., 2022, Dynamics and scale of the SARS-CoV-2 variant Omicron epidemic in England, Nature Communications, ISSN: 2041-1723

Journal article

Belser JA, Lau EHY, Barclay W, Barr IG, Chen H, Fouchier RAM, Hatta M, Herfst S, Kawaoka Y, Lakdawala SS, Lee LYY, Neumann G, Peiris M, Perez DR, Russell C, Subbarao K, Sutton TC, Webby RJ, Yang H, Yen H-Let al., 2022, Robustness of the Ferret Model for Influenza Risk Assessment Studies: a Cross-Laboratory Exercise, MBIO, Vol: 13, ISSN: 2150-7511

Journal article

Wong N, Meshkinfamfard S, Turbé V, Whitaker M, Moshe M, Bardanzellu A, Dai T, Pignatelli E, Barclay W, Darzi A, Elliott P, Ward H, Tanaka R, Cooke G, McKendry R, Atchison C, Bharath Aet al., 2022, Machine learning to support visual auditing of home-based lateral flow immunoassay self-test results for SARS-CoV-2 antibodies, Communications Medicine, Vol: 2, ISSN: 2730-664X

Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19 mass testing and antibody prevalence studies. Relatively simple to use and low cost, these tests can be self-administered at home but rely on subjective interpretation of a test line by eye, risking false positives and negatives. Here we report the development of ALFA (Automated Lateral Flow Analysis) to improve reported sensitivity and specificity. Our computational pipeline uses machine learning, computer vision techniques and signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large image library of 595,339 participant-submitted test photographs was created as part of the REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Automated analysis showed substantial agreement with human experts (Kappa 0.90-0.97) and performed consistently better than study participants, particularly for weak positive IgG results. Specificity (98.7-99.4%) and sensitivity (90.1-97.1%) were high compared with visual interpretation by human experts (ranges due to the varying prevalence of weak positive IgG tests in datasets). Alongside ALFA, we developed an analysis toolkit which could also detect device blood leakage issues. Given the potential for LFIAs to be used at scale in the COVID-19 response (for both antibody and antigen testing), even a small improvement in the accuracy of the algorithms could impact the lives of millions of people by reducing the risk of false positive and false negative result read-outs by members of the public. Our findings support the use of machine learning-enabled automated reading of at-home antibody lateral flow tests, to be a tool for improved accuracy for population-level community surveillance.

Journal article

Swann OC, Rasmussen AB, Peacock TP, Sheppard CM, Barclay WSet al., 2022, Avian Influenza A Virus polymerase can utilise human ANP32 proteins to support cRNA but not vRNA synthesis

<jats:title>Abstract</jats:title><jats:p>Host restriction limits the emergence of novel pandemic strains from the Influenza A Virus avian reservoir. For efficient replication in mammalian cells, the avian influenza RNA-dependent RNA polymerase must adapt to use human orthologues of the host factor ANP32, which lack a 33 amino acid insertion relative to avian ANP32A. Here we find that influenza polymerase requires ANP32 proteins to support both steps of replication: cRNA and vRNA synthesis. Nevertheless, avian strains are only restricted in vRNA synthesis in human cells. Therefore, avian polymerase can use human ANP32 orthologues to support cRNA synthesis, without acquiring mammalian adaptations. This implies a fundamental difference in the mechanism by which ANP32 proteins support cRNA vs vRNA synthesis.</jats:p><jats:sec><jats:title>Importance</jats:title><jats:p>In order to infect humans and cause a pandemic, avian influenza must first learn how to use human versions of the proteins the virus hijacks for replication – instead of the avian versions found in bird cells. One such protein is ANP32. Understanding the details of how host proteins such as ANP32 support viral activity may allow the design of new antiviral treatments that disrupt these interactions. In this work, we use cells that lack ANP32 to unambiguously demonstrate ANP32 is needed for both steps of influenza genome replication. Surprisingly however, we find that avian influenza can use human ANP32 proteins for the first step of replication without any adaptation, but only avian ANP32 for the second step of replication. This suggests ANP32 may have an additional role in supporting the second step of replication, and it is this activity that is specifically blocked when avian influenza infects human cells.</jats:p></jats:sec>

Journal article

McKay PF, Zhou J, Frise R, Blakney AK, Bouton CR, Wang Z, Hu K, Samnuan K, Brown JC, Kugathasan R, Yeow J, Stevens MM, Barclay WS, Tregoning JS, Shattock RJet al., 2022, Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets, Oxford Open Immunology, Vol: 3, ISSN: 2633-6960

COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine.

Journal article

Chadeau M, Tang D, Eales O, Bodinier B, Wang H, Jonnerby LJA, Whitaker M, Elliott J, Haw D, Walters C, Atchison C, Diggle P, Page A, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Donnelly C, Elliott Pet al., 2022, Cross-sectional community surveys to monitor the Omicron SARS-CoV-2 epidemic in England during February 2022, The Lancet Regional Health Europe, ISSN: 2666-7762

Background: The Omicron wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron BA.1 variant. We investigate the spread and dynamics of the SARS-CoV-2 epidemic in the population of England during February 2022, by region, age and main SARS-CoV-2 sub-lineage.Methods: In the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022).Findings: We estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76–3.00), with a within-round effective reproduction number (R) overall of 0.94 (0·91–0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00–1.09). Among 1,616 positive samples with sublineages determined, one (0.1% [0.0–0.3]) corresponded to XE BA.1/BA.2 recombinant and the remainder were Omicron: N=1,047, 64.8% (62.4–67.2) were BA.1; N=568, 35.2% (32.8–37.6) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1) of 0.38 (0.34–0.41). The highest proportion of BA.2 among positives was found in London. Interpretation: In February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required.Funding Department of Health and Social Care, England.

Journal article

Eales O, Wang H, Haw D, Ainslie KEC, Walters CE, Atchison C, Cooke G, Barclay W, Ward H, Darzi A, Ashby D, Donnelly CA, Elliott P, Riley Set al., 2022, Trends in SARS-CoV-2 infection prevalence during England’s roadmap out of lockdown, January to July 2021

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards.</jats:p></jats:sec><jats:sec><jats:title>Aim</jats:title><jats:p>We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (<jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub>) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on <jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub> of each relaxation of restrictions.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number <jats:italic>R</jats:italic><jats:sub><jats:italic>t</jats:italic></jats:sub> incre

Journal article

Chadeau M, Eales O, Bodinier B, Wang H, Haw D, Whitaker M, Elliott J, Walters C, Jonnerby LJA, Atchison C, Diggle P, Page A, Ashby D, Barclay W, Taylor G, Cooke G, Ward H, Darzi A, Donnelly C, Elliott Pet al., 2022, Breakthrough SARS-CoV-2 infections in double and triple vaccinated adults and single dose vaccine effectiveness among children in Autumn 2021 in England: REACT-1 study, EClinicalMedicine, Vol: 48, Pages: 1-14, ISSN: 2589-5370

Background: Prevalence of SARS-CoV-2 infection with Delta variant was increasing in England in late summer 2021 among children aged 5 to 17 years, and adults who had received two vaccine doses. In September 2021, a third (booster) dose was offered to vaccinated adults aged 50 years and over, vulnerable adults and healthcare/care-home workers, and a single vaccine dose already offered to 16 and 17 year-olds was extended to children aged 12 to 15 years. Methods: SARS-CoV-2 community prevalence in England was available from self-administered throat and nose swabs using reverse transcriptase polymerase chain reaction (RT-PCR) in round 13 (24 June to 12 July 2021, N= 98,233), round 14 (9 to 27 September 2021, N = 100,527) and round 15 (19 October to 5 November 2021, N = 100,112) from the REACT-1 study randomised community surveys. Linking to National Health Service (NHS) vaccination data for consenting participants, we estimated vaccine effectiveness in children aged 12 to 17 years and compared swab-positivity rates in adults who received a third dose with those who received two doses. Findings: Weighted SARS-CoV-2 prevalence was 1.57% (1.48%, 1.66%) in round 15 compared with 0.83% (0.76%, 0.89%) in round 14, and the previously observed link between infections and hospitalisations and deaths had weakened. Vaccine effectiveness against infection in children aged 12 to 17 years was estimated (round 15) at 64.0% (50.9%, 70.6%) and 67.7% (53.8%, 77.5%) for symptomatic infections. Adults who received a third vaccine dose were less likely to test positive compared to those who received two doses, with adjusted odds ratio of 0.36 (0.25, 0.53). Interpretation: Vaccination of children aged 12 to 17 years and third (booster) doses in adults were effective at reducing infection risk. High rates of vaccination, including booster doses, are a key part of the strategy to reduce infection rates in the community.

Journal article

Subissi L, von Gottberg A, Thukral L, Worp N, Munnink BBO, Rathore S, Abu-Raddad LJ, Aguilera X, Alm E, Archer BN, Cohen HA, Barakat A, Barclay WS, Bhiman JN, Caly L, Chand M, Chen M, Cullinane A, de Oliveira T, Drosten C, Druce J, Effler P, El Masry I, Faye A, Gaseitsiwe S, Ghedin E, Grant R, Haagmans BL, Herring BL, Iyer SS, Kassamali Z, Kakkar M, Kondor RJ, Leite JA, Leo Y-S, Leung GM, Marklewitz M, Moyo S, Mendez-Rico J, Melhem NM, Munster V, Nahapetyan K, Oh D-Y, Pavlin B, Peacock TP, Peiris M, Peng Z, Poon LLM, Rambaut A, Sacks J, Shen Y, Siqueira MM, Tessema SK, Volz EM, Thiel V, van der Werf S, Briand S, Perkins MD, Van Kerkhove MD, Koopmans MPG, Agrawal Aet al., 2022, An early warning system for emerging SARS-CoV-2 variants, NATURE MEDICINE, Vol: 28, Pages: 1110-1115, ISSN: 1078-8956

Journal article

Wang F, Sheppard CM, Mistry B, Staller E, Barclay WS, Grimes JM, Fodor E, Fan Het al., 2022, The C-terminal LCAR of host ANP32 proteins interacts with the influenza A virus nucleoprotein to promote the replication of the viral RNA genome, NUCLEIC ACIDS RESEARCH, Vol: 50, Pages: 5713-5725, ISSN: 0305-1048

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00516862&limit=30&person=true