Imperial College London

DrWouterBuytaert

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Reader in Hydrology and Water Resources
 
 
 
//

Contact

 

+44 (0)20 7594 1329w.buytaert Website

 
 
//

Assistant

 

Miss Judith Barritt +44 (0)20 7594 5967

 
//

Location

 

403ASkempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

110 results found

Charani E, Cunnington AJ, Yousif AHA, Ahmed MS, Ahmed AEM, Babiker S, Bedri S, Buytaert W, Crawford MA, Elbashir MI, Elhag K, Elsiddig KE, Hakim N, Johnson MR, Miras AD, Swar MO, Templeton MR, Taylor-Robinson SDet al., 2019, In transition: current health challenges and priorities in Sudan, BMJ Global Health, Vol: in press, ISSN: 2059-7908

A recent symposium and workshop in Khartoum, the capital of the Republic of Sudan, brought together broad expertise from three universities to address the current burden of communicable and non-communicable diseases facing the Sudanese healthcare system. These meetings identified common challenges that impact the burden of diseases in the country, most notably gaps in data and infrastructure which are essential to inform and deliver effective interventions. Non-communicable diseases, including obesity, type 2 diabetes, renal disease and cancer are increasing dramatically, contributing to multimorbidity. At the same time, progress against communicable diseases has been slow, and the burden of chronic and endemic infections remains considerable, with parasitic diseases (such as malaria, leishmaniasis and schistosomiasis) causing substantial morbidity and mortality. Antimicrobial resistance has become a major threat throughout the healthcare system, with an emerging impact on maternal, neonatal, and paediatric populations. Meanwhile, malnutrition, micronutrient deficiency, and poor perinatal outcomes remain common and contribute to a lifelong burden of disease. These challenges echo the UN sustainable development goals and concentrating on them in a unified strategy will be necessary to address the national burden of disease. At a time when the country is going through societal and political transition, we draw focus on the country and the need for resolution of its healthcare needs.

Journal article

Bloeschl G, Bierkens MFP, Chambel A, Cudennec C, Destouni G, Fiori A, Kirchner JW, McDonnell JJ, Savenije HHG, Sivapalan M, Stumpp C, Toth E, Volpi E, Carr G, Lupton C, Salinas J, Szeles B, Viglione A, Aksoy H, Allen ST, Amin A, Andreassian V, Arheimer B, Aryal SK, Baker V, Bardsley E, Barendrecht MH, Bartosova A, Batelaan O, Berghuijs WR, Beven K, Blume T, Bogaard T, de Amorim PB, Boettcher ME, Boulet G, Breinl K, Brilly M, Brocca L, Buytaert W, Castellarin A, Castelletti A, Chen X, Chen Y, Chen Y, Chifflard P, Claps P, Clark MP, Collins AL, Croke B, Dathe A, David PC, de Barros FPJ, de Rooij G, Di Baldassarre G, Driscoll JM, Duethmann D, Dwivedi R, Eris E, Farmer WH, Feiccabrino J, Ferguson G, Ferrari E, Ferraris S, Fersch B, Finger D, Foglia L, Fowler K, Gartsman B, Gascoin S, Gaume E, Gelfan A, Geris J, Gharari S, Gleeson T, Glendell M, Bevacqua AG, Gonzalez-Dugo MP, Grimaldi S, Gupta AB, Guse B, Han D, Hannah D, Harpold A, Haun S, Heal K, Helfricht K, Herrnegger M, Hipsey M, Hlavacikova H, Hohmann C, Holko L, Hopkinson C, Hrachowitz M, Illangasekare TH, Inam A, Innocente C, Istanbulluoglu E, Jarihani B, Kalantari Z, Kalvans A, Khanal S, Khatami S, Kiesel J, Kirkby M, Knoben W, Kochanek K, Kohnova S, Kolechkina A, Krause S, Kreamer D, Kreibich H, Kunstmann H, Lange H, Liberato MLR, Lindquist E, Link T, Liu J, Loucks DP, Luce C, Mahe G, Makarieva O, Malard J, Mashtayeva S, Maskey S, Mas-Pla J, Mavrova-Guirguinova M, Mazzoleni M, Mernild S, Misstear BD, Montanari A, Mueller-Thomy H, Nabizadeh A, Nardi F, Neale C, Nesterova N, Nurtaev B, Odongo VO, Panda S, Pande S, Pang Z, Papacharalampous G, Perrin C, Pfister L, Pimentel R, Polo MJ, Post D, Sierra CP, Ramos M-H, Renner M, Reynolds JE, Ridolfi E, Rigon R, Riva M, Robertson DE, Rosso R, Roy T, Sa JHM, Salvadori G, Sandells M, Schaefli B, Schumann A, Scolobig A, Seibert J, Servat E, Shafiei M, Sharma A, Sidibe M, Sidle RC, Skaugen T, Smith H, Spiessl SM, Stein L, Steinsland I, Strasser U, Su B, Szolgay J, Tarboton Det al., 2019, Twenty-three unsolved problems in hydrology (UPH) - a community perspective, HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, Vol: 64, Pages: 1141-1158, ISSN: 0262-6667

Journal article

Ochoa-Tocachi BF, Bardales JD, Antiporta J, Pérez K, Acosta L, Mao F, Zulkafli Z, Gil-Ríos J, Angulo O, Grainger S, Gammie G, De Bièvre B, Buytaert Wet al., 2019, Potential contributions of pre-Inca infiltration infrastructure to Andean water security, Nature Sustainability, Vol: 2, Pages: 584-593, ISSN: 2398-9629

Water resources worldwide are under severe stress from increasing climate variability and human pressures. In the tropical Andes, pre-Inca cultures developed nature-based water harvesting technologies to manage drought risks under natural climatic extremes. While these technologies have gained renewed attention as a potential strategy to increase water security, limited scientific evidence exists about their potential hydrological contributions at catchment scale. Here, we evaluate a 1,400-year-old indigenous infiltration enhancement system that diverts water from headwater streams onto mountain slopes during the wet season to enhance the yield and longevity of downslope natural springs. Infiltrated water is retained for an average of 45 d before resurfacing, confirming the system’s ability to contribute to dry-season flows. We estimate that upscaling the system to the source-water areas of the city of Lima can potentially delay 99 × 106 m3 yr−1 of streamflow and increase dry-season flows by 7.5% on average, which may provide a critical complement to conventional engineering solutions for water security.

Journal article

Uprety M, Ochoa-Tocachi BF, Paul JD, Regmi S, Buytaert Wet al., 2019, Improving water resources management using participatory monitoring in a remote mountainous region of Nepal, Journal of Hydrology Regional Studies, Vol: 23, ISSN: 2214-5818

Study RegionWe interrogate the water resources of the Upper Kaligandaki River Basin (UKGRB), in the remote Mustang District of northwestern Nepal. The Nepal Himalayas are a major reservoir of freshwater; yet the impediments to its exploitation by local inhabitants are manifold, including weak governance structures, steep and irregular terrain, and frequent natural hazards that are linked to climate change. The UKGRB is characterised by its extreme fragility, paucity of water and water-related data, and enormous variability of the effects of climate change on glaciers through time and space.Study FocusThe purpose of this paper is to elucidate catchment hydrology and local flow variability, before demonstrating the ways in which sustainable water resource management (WRM) can be achieved regionally.New Hydrological Insights for the RegionWe present the local crop water balance, and suggest methods to reduce crop water requirements and to ensure a more equitable distribution of available seasonal flow. We also propose a series of long-term changes that are needed to secure sustainability. Then, we suggest that the principles of citizen science can help to improve the spatial coverage of data, generating new hydrological time series (e.g. river discharge), which can aid local decision makers in the WRM realm (e.g. irrigation scheduling). This approach has the potential to be scaled-up across the entire UKGRB (and, indeed, Nepal as a whole).

Journal article

Regmi S, Bhusal J, Gurung P, Zulkafli Z, Karpouzoglou T, Ochoa Tocachi B, Buytaert W, Mao Fet al., Learning to cope with water variability through participatory monitoring: the case study of the Mountainous region, Nepal, Meteorology Hydrology and Water Management, Vol: 7, Pages: 49-61, ISSN: 2299-3835

Participatory monitoring allows communities to understand the use and management of local water resources and at the same time develop a sense of ownership of environmental information. The data generated through participatory monitoring of stream flow and rainfall generate evidences to corroborate local people's experiences with changing water resources patterns. In this study we evaluate the potential of participatory monitoring of hydrological variables to improve scarce water supply utilization in agriculture. The case study site is the Mustang district in Nepal, which is located in the upper Kaligandaki river basin in the Himalayas with unique and complex geographical and climatic features. This region is characterized by a semi-arid climate with total annual precipitation of less than 300 mm. Water supply, agricultural land, and livestock grazing are the key ecosystem services that underpin livelihood security of the local population, particularly socio-economically vulnerable groups. An analysis of the measured stream flow data indicate that annual flow of water in the stream can meet the current crop irrigation water needs for the agricultural land of the research site. The data provide local farmers a new way of understanding local water needs. Participatory monitoring would contribute to an optimization of the use of ecosystem services to support economic development and livelihood improvement.

Journal article

Agrawal S, Chakraborty A, Karmakar N, Moulds S, Mijic A, Buytaert Wet al., Effects of winter and summer-time irrigation over Gangetic Plain on the mean and intra-seasonal variability of Indian summer monsoon, Climate Dynamics, ISSN: 0930-7575

The decreasing trend in rainfall in the last few decades over the Indo-Gangetic Plains of northern India as observed in ground-based observations puts increasing stress on groundwater because irrigation uses up to 70% of freshwater resources. In this work, we have analyzed the effects of extensive irrigation over the Gangetic Plains on the seasonal mean and intra-seasonal variability of the Indian summer monsoon, using a general circulation model and a very high-resolution soil moisture dataset created using extensive field observations in a state-of-the-art hydrological model. We find that the winter-time (November–March) irrigation has a positive feedback on the Indian summer monsoon through large scale circulation changes. These changes are analogous to a positive North Atlantic Oscillation (NAO) phase during winter months. The effects of the positive NAO phase persist from winter to spring through widespread changes in surface conditions over western and central Asia, which makes the pre-monsoon conditions suitable for a subsequent good monsoon over India. Winter-time irrigation also resulted in a reduction of low frequency intra-seasonal variability over the Indian region during the monsoon season. However, when irrigation is practiced throughout the year, a decrease in June–September precipitation over the Gangetic Plains, significant at 95% level, is noted as compared to the no-irrigation scenario. This decrease is attributed to the increase in local soil moisture due to irrigation, which results in a southward shift of the moisture convergence zone during the active phase of monsoon, decreasing its mean and intraseasonal variability. Interestingly, these changes show a remarkable similarity to the long-term trend in observed rainfall spatial pattern and low-frequency variability. Our results suggest that with a decline in the mean summer precipitation and stressed groundwater resources in the Gangetic Plains, the water crisis could exacerbate, wi

Journal article

Grainger S, Hommes L, Karpouzoglou T, Perez K, Buytaert W, Dewulf Aet al., 2019, The development and intersection of highland-coastal scale frames: a case study of water governance in central Peru, Journal of Environmental Policy and Planning, ISSN: 1522-7200

Scale framing makes an important difference to how complex environmental policy issues are defined and understood by different groups of actors. Increasing urban water demand and uncertain future climatic conditions in the Andes present major water governance challenges for the coastal regions of Peru. An understudied dimension of Peruvian water governance is how scale framing shapes the way problems are defined, and solutions are pursued. Here, we aim to strengthen the understanding of scale framing as it relates to highland-coastal interactions in central Peru between 2004 and 2015. By analysing this period of significant water governance reforms, we identify five prominent water-related frame dimensions and three differently scaled policy storylines and reveal how they developed and intersected over time. The storylines, supported by particular visualisations, either foreground ‘urbanshed’-level investment in water supply infrastructure, community-level cultural restoration for improved local agricultural production, or nationwide watershed-level financial mechanisms for highland ecosystem conservation. Our study shows how the intersection of these storylines at different moments during the policy process often had a strengthening effect, creating a coalition of actors who were then able to generate sufficient momentum and support within the Peruvian government for the implementation of conservation-based watershed investments.

Journal article

Ochoa-Tocachi B, Alemie T, Guzman CD, Tilahun SA, Zimale FA, Buytaert W, Steenhuis TSet al., 2019, Sensitivity analysis of the parameter-efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes, Land Degradation and Development, Pages: 151-165, ISSN: 1085-3278

Sustainable development in degraded landscapes in the humid tropics require effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multi‐objective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes.

Journal article

Zogheib C, Ochoa-Tocachi BF, Paul JD, Hannah DM, Clark J, Buytaert Wet al., 2018, Exploring a water data, evidence, and governance theory, Water Security, Vol: 4-5, Pages: 19-25, ISSN: 2468-3124

The hydrological evidence on which water resource management and broader governance decisions are based is often very limited. This issue is especially pronounced in lower- and middle-income countries, where not only data are scarce but where pressure on water resources is often already very high and increasing. Historically, several governance theories have been put forward to examine water resource management. One of the more influential is Elinor Ostrom’s theory of common-pool resources. However while used very widely, the underlying principles of Ostrom’s approach make pronounced implicit assumptions about the role of data and evidence in common-pool resource systems. We argue here this overlooks how power relations, user characteristics, system arrangements, and technological advances modulate fundamental associations between data, evidence, and governance, which we contend need to be considered explicitly. Examining the case of water allocations in Quito, Ecuador, we develop a set of concrete criteria to inform the ways in which Ostrom’s principles can be applied in a data-scarce, institutionally complex, polycentric context. By highlighting the variable impact of data availability on subsequent evidence generation, these criteria have the potential to test the applicability of common assumptions about how to achieve water security in a developmental context, and hence offer the possibility of developing a more encompassing theory about the interactions between water data, evidence, and governance.

Journal article

Buytaert W, Vitolo C, Fry M, Spencer M, Gauster Tet al., 2018, cvitolo/rnrfa: rnrfa v1.5

rnrfa: An R package to Retrieve, Filter and Visualize Data from the UK National River Flow Archive

Software

De Stercke S, Mijic A, Buytaert W, Chaturvedi Vet al., 2018, Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective, Applied Energy, Vol: 230, Pages: 615-626, ISSN: 0306-2619

Cities are concentrations of demand to water and energy systems that rely on resources under increasing pressure from scarcity and climate change mitigation targets. They are linked in many ways across their different components, the collection of which is termed a nexus. In industrialised countries, the residential end-use component of the urban water-energy nexus has been identified as significant. However, the effect of the end-use water and energy interdependence on urban dynamics had not been studied. In this work, a novel system dynamics model is developed with an explicit representation of the water-energy interactions at the residential end use and their influence on the demand for resources. The model includes an endogenous carbon tax based climate change mitigation policy which aims to meet carbon targets by reducing consumer demand through price. It also encompasses water resources planning with respect to system capacity and supply augmentation. Using London as a case study, we show that the inclusion of end-use interactions has a major impact on the projections of water sector requirements. In particular, future water demand per capita is lower, and less supply augmentation is needed than would be planned for without considering the interactions. We find that deep decarbonisation of electricity is necessary to maintain an acceptable quality of life while remaining within water and greenhouse gas emissions constraints. The model results show a clear need for consideration of the end-use level water-energy interactions in policy analysis. The modelling tool provides a base for this that can be adapted to the context of any industrialised country.

Journal article

Shukla AK, Ojha CSP, Mijic A, Buytaert W, Pathak S, Garg RD, Shukla Set al., 2018, Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin, HYDROLOGY AND EARTH SYSTEM SCIENCES, Vol: 22, Pages: 4745-4770, ISSN: 1027-5606

The Upper Ganga River basin is socioeconomically the most important river basin in India and is highly stressed in terms of water resources due to uncontrolled land use and land cover (LULC) activities. This study presents a comprehensive set of analyses to evaluate the population growth, LULC transformations, and water quality nexus for sustainable development in this river basin. The study was conducted at two spatial scales: basin scale and district scale. First, population data were analyzed statistically to study demographic changes, followed by LULC change detection over the period of February–March 2001 to 2012 (Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data) using remote sensing and geographical information system (GIS) techniques. Trends and spatiotemporal variations in monthly water quality parameters, viz. biological oxygen demand (BOD), dissolved oxygen (DO, measured in percentage), fluoride (F), hardness (CaCO3), pH, total coliform bacteria and turbidity, were studied using the Mann–Kendall rank test and an overall index of pollution (OIP) developed specifically for this region, respectively. A relationship was deciphered between LULC classes and OIP using multivariate techniques, viz. Pearson's correlation and multiple linear regression. From the results, it was observed that population has increased in the river basin. Therefore, significant and characteristic LULC changes were observed. The river became polluted in both rural and urban areas. In rural areas, pollution is due to agricultural practices, mainly fertilizers, whereas in urban areas it is mainly contributed from domestic and industrial wastes. Water quality degradation has occurred in the river basin, and consequently the health status of the river has also changed from acceptable to slightly polluted in urban areas. Multiple linear regression models developed for the Upper Ganga River basin could successfully predict status of the water quality, i.e., OIP, using LULC clas

Journal article

Moulds S, Buytaert W, Mijic A, 2018, A spatio-temporal land use and land cover reconstruction for India from 1960-2010, Scientific Data, Vol: 5, ISSN: 2052-4463

In recent decades India has undergone substantial land use/land cover change as a result of population growth and economic development. Historical land use/land cover maps are necessary to quantify the impact of change at global and regional scales, improve predictions about the quantity and location of future change and support planning decisions. Here, a regional land use change model driven by district-level inventory data is used to generate an annual time series of high-resolution gridded land use/land cover maps for the Indian subcontinent between 1960-2010. The allocation procedure is based on statistical analysis of the relationship between contemporary land use/land cover and various spatially explicit covariates. A comparison of the simulated map for 1985 against remotely-sensed land use/land cover maps for 1985 and 2005 reveals considerable discrepancy between the simulated and remote sensing maps, much of which arises due to differences in the amount of land use/land cover change between the inventory data and the remote sensing maps.

Journal article

Mao F, Clark J, Buytaert W, Krause S, Hannah DMet al., 2018, Water sensor network applications: Time to move beyond the technical?, HYDROLOGICAL PROCESSES, Vol: 32, Pages: 2612-2615, ISSN: 0885-6087

Journal article

Ochoa-Tocachi BF, Buytaert W, Antiporta J, Acosta L, Bardales JD, Célleri R, Crespo P, Fuentes P, Gil-Ríos J, Guallpa M, Llerena C, Olaya D, Pardo P, Rojas G, Villacís M, Villazón M, Viñas P, De Bièvre Bet al., 2018, High-resolution hydrometeorological data from a network of headwater catchments in the tropical Andes, Scientific Data, Vol: 5, ISSN: 2052-4463

This article presents a hydrometeorological dataset from a network of paired instrumented catchments, obtained by participatory monitoring through a partnership of academic and non-governmental institutions. The network consists of 28 headwater catchments (<20 km2) covering three major biomes in 9 locations of the tropical Andes. The data consist of precipitation event records at 0.254 mm resolution or finer, water level and streamflow time series at 5 min intervals, data aggregations at hourly and daily scale, a set of hydrological indices derived from the daily time series, and catchment physiographic descriptors. The catchment network is designed to characterise the impacts of land-use and watershed interventions on the catchment hydrological response, with each catchment representing a typical land use and land cover practice within its location. As such, it aims to support evidence-based decision making on land management, in particular evaluating the effectiveness of catchment interventions, for which hydrometeorological data scarcity is a major bottleneck. The data will also be useful for broader research on Andean ecosystems, and their hydrology and meteorology.

Journal article

O'Keeffe J, Moulds S, Bergin E, Brozovic N, Mijic A, Buytaert Wet al., 2018, Including farmer irrigation behavior in a socio‐hydrological modelling framework with application in north India, Water Resources Research, ISSN: 0043-1397

Understanding water user behavior and its potential outcomes is important for the development of suitable water resource management options. Computational models are commonly used to assist water resource management decision making; however, while natural processes are increasingly well modeled, the inclusion of human behavior has lagged behind. Improved representation of irrigation water user behavior within models can provide more accurate and relevant information for irrigation management in the agricultural sector. This paper outlines a model that conceptualizes and proceduralizes observed farmer irrigation practices, highlighting impacts and interactions between the environment and behavior. It is developed using a bottom‐up approach, informed through field experience and farmer interaction in the state of Uttar Pradesh, northern India. Observed processes and dynamics were translated into parsimonious algorithms, which represent field conditions and provide a tool for policy analysis and water management. The modeling framework is applied to four districts in Uttar Pradesh and used to evaluate the potential impact of changes in climate and irrigation behavior on water resources and farmer livelihood. Results suggest changes in water user behavior could have a greater impact on water resources, crop yields, and farmer income than changes in future climate. In addition, increased abstraction may be sustainable but its viability varies across the study region. By simulating the feedbacks and interactions between the behavior of water users, irrigation officials and agricultural practices, this work highlights the importance of directly including water user behavior in policy making and operational tools to achieve water and livelihood security.Publication cover imageEarly ViewOnline Version of Record before inclusion in an issueThis article also appears in:Socio-hydrology: Spatial and Temporal Dynamics of Coupled Human-Water Systems

Journal article

Buytaert W, Ochoa Tocachi B, Hannah DM, Clark J, Dewulf Aet al., 2018, Co-generating knowledge on ecosystem services and the role of new technologies, Ecosystem Services and Poverty Alleviation: Trade-offs and Governance, Editors: Schreckenberg, Mace, Poudyal, London, Publisher: Taylor & Francis Group, Pages: 174-188, ISBN: 9780429016295

Policy makers are increasingly aware that decision-making in the context of ecosystem services management, and of development, can benefit from collaborative and inclusive approaches to knowledge generation and the design of intervention strategies, such as by providing a more prominent role for indigenous knowledge in decision-making and by using participatory methods for data collection and knowledge generation. In this chapter, we discuss how technologies such as mobile phones, low-cost and robust sensors, and increasingly pervasive remote-sensing satellites and drones can be particularly transformative in the way they facilitate the creation, access and transmission of information about ecosystem services, and support evidence-based decision-making. Furthermore, we discuss how these technologies can be used to promote stakeholder involvement in the knowledge generation process and to make it more inclusive and participatory. While we highlight potential risks related to the use of new technologies, such as exploitation by specific stakeholders to support specific agendas or interests, we identify opportunities for an increasing diversification and tailoring of knowledge creation, moving away from a top-down process dominated by scientists and toward more decentralised, bottom-up and iterative approaches that can have a transformative impact on local ecosystem services management, making it more inclusive, polycentric, evidence-based and robust.

Book chapter

Tsarouchi G, Buytaert W, 2018, Land-use change may exacerbate climate change impacts on water resources in the Ganges basin, Hydrology and Earth System Sciences Discussions, Vol: 22, Pages: 1411-1435, ISSN: 1812-2108

Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000–2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000–2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period.Significant changes in the near-future (years 2030–2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential i

Journal article

Appel M, Lahn F, Buytaert W, Pebesma Eet al., 2018, Open and scalable analytics of large Earth observation datasets: from scenes to multidimensional arrays using SciDB and GDAL, ISPRS Journal of Photogrammetry and Remote Sensing, Vol: 138, Pages: 47-56, ISSN: 0924-2716

Earth observation (EO) datasets are commonly provided as collection of scenes, where individual scenes represent a temporal snapshot and cover a particular region on the Earth's surface. Using these data in complex spatiotemporal modeling becomes difficult as soon as data volumes exceed a certain capacity or analyses include many scenes, which may spatially overlap and may have been recorded at different dates. In order to facilitate analytics on large EO datasets, we combine and extend the geospatial data abstraction library (GDAL) and the array-based data management and analytics system SciDB. We present an approach to automatically convert collections of scenes to multidimensional arrays and use SciDB to scale computationally intensive analytics. We evaluate the approach in three study cases on national scale land use change monitoring with Landsat imagery, global empirical orthogonal function analysis of daily precipitation, and combining historical climate model projections with satellite-based observations. Results indicate that the approach can be used to represent various EO datasets and that analyses in SciDB scale well with available computational resources. To simplify analyses of higher-dimensional datasets as from climate model output, however, a generalization of the GDAL data model might be needed. All parts of this work have been implemented as open-source software and we discuss how this may facilitate open and reproducible EO analyses.

Journal article

Vuille M, Carey M, Huggel C, Buytaert W, Rabatel A, Jacobsen D, Soruco A, Villacis M, Yarleque C, Timm OE, Condom T, Salzmann N, Sicart J-Eet al., 2018, Rapid decline of snow and ice in the tropical Andes - Impacts, uncertainties and challenges ahead, EARTH-SCIENCE REVIEWS, Vol: 176, Pages: 195-213, ISSN: 0012-8252

Journal article

Ochoa Tocachi BF, Buytaert W, De Bièvre B, 2017, Participatory monitoring of the impact of watershed interventions in the tropical Andes, Andean Hydrology, Editors: Rivera, Godoy-Faundez, Lillo Saavedra, Publisher: CRC Press (Taylor & Francis Group), Pages: 126-163, ISBN: 9781498788403

This chapter documents the motivations and methods of the Regional Initiative for Hydrological Monitoring of Andean Ecosystems (iMHEA). First, it introduces the context that led to the formation of a diverse consortium of institutions with a joint interest in Andean ecosystems and water. The methodological approach adopted by the monitoring network is then presented in detail. Lastly, this chapter shows preliminary main results, the most relevant milestones and breakthroughs, and the major remaining challenges and perspectives in the scientific, technological and social domains. The objective of the monitoring, as promoted by iMHEA, is to generate standardized data that can be used to increase the knowledge about hydrological ecosystem services in Andean watersheds and the impacts of watershed interventions. The correct use of the generated knowledge, from community level to national governance entities, proves crucial to increase catchment intervention efficiency and improve decision-making on water resources management in data-scarce regions, with potential application to other regions of the world.

Book chapter

Fernanda Cardenas M, Tobon C, Buytaert W, 2017, Contribution of occult precipitation to the water balance of paramo ecosystems in the Colombian Andes, HYDROLOGICAL PROCESSES, Vol: 31, Pages: 4440-4449, ISSN: 0885-6087

Journal article

Arnillas CA, Tovar C, Cadotte MW, Buytaert Wet al., 2017, From patches to richness: assessing the potential impact of landscape transformation on biodiversity, ECOSPHERE, Vol: 8, ISSN: 2150-8925

Journal article

Paul JD, Buytaert W, Allen S, Ballesteros-Canovas JA, Bhusal J, Cieslik K, Clark J, Dugar S, Hannah DM, Stoffel M, Dewulf A, Dhital MR, Liu W, Nayaval JL, Neupane B, Schiller A, Smith PJ, Supper Ret al., 2017, Citizen science for hydrological risk reduction and resilience building, Wiley Interdisciplinary Reviews: Water, Vol: 5, ISSN: 2049-1948

In disaster risk management (DRM), an emerging shift has been noted from broad-scale, top-down assessments toward more participatory, community-based, bottom-up approaches. Arguably, nonscientist local stakeholders have always played an important role in knowledge risk management and resilience building within a hydrological context, such as flood response and drought alleviation. However, rapidly developing information and communication technologies such as the Internet, smartphones, and social media have already demonstrated their sizeable potential to make knowledge creation more multidirectional, decentralized, diverse, and inclusive. Combined with technologies for robust and low-cost sensor networks, a ‘citizen science’ approach has recently emerged as a promising direction in the provision of extensive, real-time information for risk management. Such projects work best when there is community buy-in, when their purpose(s) are clearly defined at the outset, and when the motivations and skillsets of all participants and stakeholders are well understood. They have great potential to enhance knowledge creation, not only for data collection, but also for analysis or interpretation. In addition, they can serve as a means of educating and empowering communities and stakeholders that are bypassed by more traditional knowledge generation processes. Here, we review the state-of-the-art of citizen science within the context of hydrological risk reduction and resilience building. Particularly when embedded within a polycentric approach toward risk governance, we argue that citizen science could complement more traditional knowledge generation practices, and also enhance innovation, adaptation, multidirectional information provision, risk management, and local resilience building.

Journal article

Shukla AK, Ojha CSP, Mijic A, Buytaert W, Pathak S, Garg RD, Shukla Set al., Population Growth&amp;ndash;Land Use/Land Cover Transformations&amp;ndash;Water Quality Nexus in Upper Ganga River Basin, Hydrology and Earth System Sciences Discussions, Pages: 1-46

<jats:p>For sustainable development in a river basin it is crucial to understand population growth&amp;amp;ndash;Land Use/Land Cover (LULC) transformations&amp;amp;ndash;water quality nexus. This study investigates effects of demographic changes and LULC transformations on surface water quality of Upper Ganga River basin. River gets polluted in both rural and urban area. In rural area, pollution is because of agricultural practices mainly fertilizers, whereas in urban area it is mainly because of domestic and industrial wastes. First, population data was analyzed statistically to study demographic changes in the river basin. LULC change detection was done over the period of February/March 2001 to 2012 [Landsat 7 Enhanced Thematic Mapper (ETM+) data] using remote sensing and Geographical Information System (GIS) techniques. Further, water quality parameters viz. Biological Oxygen Demand (BOD), Dissolve Oxygen (DO) %, Flouride (F), Hardness CaCO&lt;sub&gt;3&lt;/sub&gt;, pH, Total Coliform bacteria and Turbidity were studied in basin for pre-monsoon (May), monsoon (July) and Post-monsoon (November) seasons. Non-parametric Mann&amp;amp;ndash;Kendall rank test was done on monthly water quality data to study existing trends. Further, Overall Index of Pollution (OIP) developed specifically for Upper Ganga River basin was used for spatio-temporal water quality assessment. From the results, it was observed that population has increased in the river basin. Therefore, significant and characteristic LULC changes are observed in the study area. Water quality degradation has occurred in the river basin consequently the health status of the rivers have also changed from range of acceptable to slightly polluted in urban areas. </jats:p>

Journal article

Buytaert W, Moulds S, Acosta L, De Bièvre B, Olmos C, Villacis M, Tovar C, Verbist KMJet al., 2017, Glacier melt content of water use in the tropical Andes, Environmental Research Letters, Vol: 12, ISSN: 1748-9326

Accelerated glaciers melt is expected to affect negatively the water resources of mountain regions and their adjacent lowlands, with tropical mountain regions being among the most vulnerable. In order to quantify those impacts, it is necessary to understand the changing dynamics of glacier melting, but also to map how glacier melt water contributes to current and future water use, which often occurs at considerable distance downstream of the glacier terminus. While the dynamics of tropical glacier melt are increasingly well understood and documented, major uncertainty remains on how tropical glacier meltwater contribution propagates through the hydrological system, and hence how it contributes to various types of human water use in downstream regions. Therefore, in this paper we present a detailed regional mapping of current water demand in regions downstream of the major tropical glaciers. We combine these maps with a regional water balance model to determine the dominant spatiotemporal patterns of glacier meltwater contribution to human water use at unprecedented scale and resolution. We find that the number of users relying continuously on water resources with a high (&gt;25%) long-term average glacier melt contribution is low (391 000 domestic users, 398 km2 of irrigated land, and 11 MW of hydropower production). But this reliance increases sharply during drought conditions (up to 3.92 million domestic users, 2096 km2 of irrigated land, and 732 MW of hydropower production in the driest month of a drought year). A large share of domestic and agricultural users is located in rural regions where climate adaptation capacity tends to be low. Therefore, we suggest that adaptation strategies should focus on increasing the natural and artificial water storage and regulation capacity to bridge dry periods.

Journal article

Manz B, Paez-Bimos S, Horna N, Buytaert W, Ochoa-Tocachi B, Lavado-Casimiro W, Willems Bet al., 2017, Comparative Ground Validation of IMERG and TMPA at Variable Spatiotemporal Scales in the Tropical Andes, Journal of Hydrometeorology, Vol: Sept 2017, Pages: 2469-2489, ISSN: 1525-7541

An initial ground validation of the Integrated Multisatellite Retrievals for GPM (IMERG) Day-1 product from March 2014 to August 2015 is presented for the tropical Andes. IMERG was evaluated along with the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) against 302 quality-controlled rain gauges across Ecuador and Peru. Detection, quantitative estimation statistics, and probability distribution functions are calculated at different spatial (0.1°, 0.25°) and temporal (1 h, 3 h, daily) scales. Precipitation products are analyzed for hydrometeorologically distinct subregions. Results show that IMERG has a superior detection and quantitative rainfall intensity estimation ability than TMPA, particularly in the high Andes. Despite slightly weaker agreement of mean rainfall fields, IMERG shows better characterization of gauge observations when separating rainfall detection and rainfall rate estimation. At corresponding space–time scales, IMERG shows better estimation of gauge rainfall probability distributions than TMPA. However, IMERG shows no improvement in both rainfall detection and rainfall rate estimation along the dry Peruvian coastline, where major random and systematic errors persist. Further research is required to identify which rainfall intensities are missed or falsely detected and how errors can be attributed to specific satellite sensor retrievals. The satellite–gauge difference was associated with the point-area difference in spatial support between gauges and satellite precipitation products, particularly in areas with low and irregular gauge network coverage. Future satellite–gauge evaluations need to identify such locations and investigate more closely interpixel point-area differences before attributing uncertainties to satellite products.

Journal article

Mathez-Stiefel S-L, Peralvo M, Baez S, Rist S, Buytaert W, Cuesta F, Fadrique B, Feeley KJ, Groth AAP, Homeier J, Llambi LD, Locatelli B, Lopez Sandoval F, Malizia A, Young KRet al., 2017, Research priorities for the conservation and sustainable governance of Andean Forest landscapes, Mountain Research and Development, Vol: 37, Pages: 323-339, ISSN: 0276-4741

The long-term survival of Andean forest landscapes (AFL) and of their capacity to contribute to sustainable development in a context of global change requires integrated adaptation and mitigation responses informed by a thorough understanding of the dynamic and complex interactions between their ecological and social components. This article proposes a research agenda that can help guide AFL research efforts for the next 15 years. The agenda was developed between July 2015 and June 2016 through a series of workshops in Ecuador, Peru, and Switzerland and involved 48 researchers and development experts working on AFL from different disciplinary perspectives. Based on our review of current research and identification of pressing challenges for the conservation and sustainable governance of AFL, we propose a conceptual framework that draws on sustainability sciences and social–ecological systems research, and we identify a set of high-priority research goals and objectives organized into 3 broad categories: systems knowledge, target knowledge, and transformation knowledge. This paper is intended to be a reference for a broad array of actors engaged in policy, research, and implementation in the Andean region. We hope it will trigger collaborative research initiatives for the continued conservation and sustainable governance of AFL.

Journal article

Mao F, Clark J, Karpouzoglou T, Dewulf A, Buytaert W, Hannah Det al., 2017, HESS Opinions: A conceptual framework for assessing socio-hydrological resilience under change, HYDROLOGY AND EARTH SYSTEM SCIENCES, Vol: 21, Pages: 3655-3670, ISSN: 1027-5606

Despite growing interest in resilience, there is still significant scope for increasing its conceptual clarity and practical relevance in socio-hydrological contexts: specifically, questions of how socio-hydrological systems respond to and cope with perturbations and how these connect to resilience remain unanswered. In this opinion paper, we propose a novel conceptual framework for understanding and assessing resilience in coupled socio-hydrological contexts, and encourage debate on the inter-connections between socio-hydrology and resilience. Taking a systems perspective, we argue that resilience is a set of systematic properties with three dimensions: absorptive, adaptive, and transformative, and contend that socio-hydrological systems can be viewed as various forms of human–water couplings, reflecting different aspects of these interactions. We propose a framework consisting of two parts. The first part addresses the identity of socio-hydrological resilience, answering questions such as resilience of what in relation to what. We identify three existing framings of resilience for different types of human–water systems and subsystems, which have been used in different fields: (1) the water subsystem, highlighting hydrological resilience to anthropogenic hazards; (2) the human subsystem, foregrounding social resilience to hydrological hazards; and (3) the coupled human–water system, exhibiting socio-hydrological resilience. We argue that these three system types and resiliences afford new insights into the clarification and evaluation of different water management challenges. The first two types address hydrological and social states, while the third type emphasises the feedbacks and interactions between human and water components within complex systems subject to internal or external disturbances. In the second part, we focus on resilience management and develop the notion of the resilience canvas, a novel heuristic device to identify possible pa

Journal article

Arora H, Ojha CSP, Buytaert W, Kaushika GS, Sharma Cet al., Spatio-temporal trends in observed and downscaled precipitation over Ganga Basin, Hydrology and Earth System Sciences Discussions, Pages: 1-19

<jats:p>This paper focuses on the spatio-temporal trends of precipitation over the Ganga Basin in India for over 2 centuries. Trends in precipitation amounts are detected using observed data for historical period in 20th century and using downscaled precipitation data from 37 GCMs for 21st century. The ranking of 37 GCMs (from CMIP5 archive) is done employing a statistics based skill score. The best ranked GCM output is then bias corrected with observed precipitation prior to further analysis. The direction and magnitude of trend in annual and seasonal precipitation series is determined using Mann Kendall’s test statistic (ZMK) and Thiel Sen’s Slope estimator (β). The plots depicting the spatial variation of ZMK and β are prepared which provides a comprehensive inter-scenario comparison of spatio-temporal trends in precipitation series. Highly non-uniform spatio-temporal trends are detected for observed precipitation series. It is observed that the precipitation for annual and southwest monsoon season is indicating a rising trend for all future emission scenarios in the region adjacent to Himalayas (northeast side of study area) but shows falling trends in the plains away from the Himalayas. Insignificant trends are observed in pre-monsoon and winter season precipitation. An inter-emission-scenario comparison shows that for higher emission scenarios the annual and southwest monsoon precipitation is showing rising trends with increasing spatial dominance i.e. the area under rising trends increases as we observe it from low to high emission scenarios. </jats:p>

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00610263&limit=30&person=true