Imperial College London

ProfessorWouterBuytaert

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Professor in Hydrology and Water Resources
 
 
 
//

Contact

 

+44 (0)20 7594 1329w.buytaert Website

 
 
//

Assistant

 

Miss Judith Barritt +44 (0)20 7594 5967

 
//

Location

 

403ASkempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

196 results found

Docherty JM, Mao F, Buytaert W, Clark JRA, Hannah DMet al., 2020, A framework for understanding water-related multi-hazards in a sustainable development context, PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, Vol: 44, Pages: 267-284, ISSN: 0309-1333

Journal article

Rau P, Buytaert W, Drenkhan F, Lavado W, Jimenez J, Montoya N, Bonnesoeur V, Valdivia G, Cachay W, Goyburo A, Risco E, Abad J, Mackay J, Hannah D, Barrand N, Siegert M, Macera B, Bueno M, Baca C, Gianella Cet al., 2020, RAHU Project: Assessing water security and climate change adaptation strategies in the glaciated Vilcanota-Urubamba river basin

<jats:p> &amp;lt;p&amp;gt;The Peruvian Andes are a hotspot of vulnerabilities to impacts in water resources due to the propensity for water stress, the highly unpredictable weather, the sensitivity of glaciers, and the socio-economic vulnerability of its population. In this context, we selected the Vilcanota-Urubamba catchment in Southern Peru for addressing these challenges aiming at our objectives within a particular hydrological high-mountain context in the tropical Andes: a) Develop a fully-distributed, physically-based glacier surface energy balance model that allows for a realistic representation of glacier dynamics in glacier melt projections; b) Design and implement a glacio-hydrological monitoring and data collection approach to quantify non-glacial contributions to water resources and the impact of catchments interventions; c) Mapping of human water use at high spatiotemporal resolution and determining current and future levels of water (in)security; and d) Integrate last objectives in a glacier - water security assessment model and evaluate the tool's capacity to support locally embedded climate change adaptation strategies.&amp;amp;#160;&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;The RAHU project intends to transform the scientific understanding of the impact of glacier shrinkage on water security and, at the same time, to connect to and inform policy practices in Peru. It follows a &amp;quot;source to tap&amp;quot; paradigm, in which is planned to deliver a comprehensive and fully integrated water resources vulnerability assessment framework for glacier-fed basins, comprising state-of-the-art glaciology, hydrology, water demand characterisation, and water security assessment. It includes glacio-hydrological and water resources monitoring campaigns, to complement existing monitoring efforts of our project partners and collaborators, and new remotely sensed data sets. Those campaigns will be implemented using the pr

Journal article

Goyburo A, Rau P, Lavado W, Drenkhan F, Buytaert Wet al., 2020, Present and future water security under socioeconomic and climate changes in the Vilcanota-Urubamba basin

<jats:p> &amp;lt;p&amp;gt;This research assesses present (2009-2016) and future (until 2100) levels of water security taking into consideration socioeconomic and climate change scenarios using the WEAP (Water Evaluation and Planning) tool for semidistributed hydrological modeling. The study area covers the&amp;amp;#160; Vilcanota-Urubamba basin in the southern Peruvian Andes and presents a complex water demand context as a glacier-fed system.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;Current total water demand is estimated in 5.12E+9 m3/year and includes agriculture (6674.17 m3/year), domestic (7.79E+07m3/year), industrial (1.01E+06 m3/year) and energy (5.03e+9 m3/year) consumption. For assessing the current water supply, observed flow data is used to simulate and validate the model (also accounting for glacier melt contribution). The analysis of unmet water demand for the period 2016&amp;amp;#8211;2100 was computed using the soil moisture scheme of the WEAP model, which simulates the hydrological cycle and generates future scenarios for water demand. Different scenarios were generated for external driving factors (population growth and increasing agriculture area) and the impact of climate change to evaluate their effect on the current water supply system.&amp;amp;#160;&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;These results will allow for the first time to evaluate the impact of changes in glacier melt contributions on water security taking into account also changes in water demand.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;This study also further explores the importance of incorporating science and policy within a broader study of water security. As a result, it is expected to deliver high spatial resolution water demand maps and adaptation strategies for stakeholders. This research is part of the RAHU project as a new multidisciplinary collaboration between UK and Peruvian scientists.&amp;lt;/p&amp

Journal article

Moulds S, Buytaert W, 2020, A socio-hydrological model to explore the role of social inequality on human-flood interactions

<jats:p> &amp;lt;p&amp;gt;In several developing cities flooding has become an annual occurrence which threatens lives, livelihoods and homes. However, the exposure of urban populations to climate risks such as flooding is highly heterogeneous, with the effects of climate variability felt disproportionately by the poor. Rapid urbanisation and population growth, combined with systemic factors such as complex land tenure arrangements, inadequate transportation and weak governance, has led to the proliferation of unplanned urban settlements which lack basic infrastructure and are frequently situated on marginal, flood-prone land. While the immediate effects of floods can cause physical, economic and social devestation, floods also have multiple long-lasting effects which may increase vulnerability and exacerbate inequalities. Here, we adapt an existing socio-hydrological model of human-flood interactions (Di Baldassarre et al. 2013; Viglione et al. 2014) to explicitly account for a stratified society consisting of the &amp;amp;#8220;haves&amp;amp;#8221;, who reside in planned settlements with some degree of flood protection, and the &amp;amp;#8220;have-nots&amp;amp;#8221;, who live in unplanned, informal settlements which are more vulnerable to flooding. Initially, we conduct a sensitivity analysis to identify the parameters in the original model which may be influenced by social inequality. We then introduce a new state variable to represent the transfer of wealth from the &amp;amp;#8220;haves&amp;amp;#8221; to the &amp;amp;#8220;have-nots&amp;amp;#8221;, and use this setup to investigate the effects of wealth redistribution on the co-evolution of the coupled system.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;&amp;lt;strong&amp;gt;References:&amp;lt;/strong&amp;gt;&amp;lt;/p&amp;gt;&amp;lt;ul&amp;gt;&amp;lt;li&amp;gt;Baldassarre, G. D. et al. (2013). Socio-hydrology: con

Journal article

Smith P, Buytaert W, Paul J, Allen Set al., 2020, Merging different resolution rainfall products to support landslide prediction over Nepal

<jats:p> &amp;lt;p&amp;gt;Landslides within Nepal result both from human interventions, intensive rainfall and tectonic activity. This work presents the steps taken towards the development of a Territorial landslide early warning system (Te-LEWSs) for predicting the relative probability of the occurrence of precipitation driven landslides in the west of Nepal. Since precipitation triggers may be dominated by intense short periods of rainfall focus is given to testing the use of relationships between high resolution local observed precipitation, satellite data and Numerical Weather Models output in the development of the forecasting model. Our results show the relative importance of these alongside the significance of human activity when the model is compared against observed data sets.&amp;lt;/p&amp;gt; </jats:p>

Journal article

Buytaert W, Paul J, Ochoa-Tocachi B, 2020, Characterising extreme rainfall over mountain regions with a network of tipping bucket rain gauges and GPM satellite data

<jats:p> &amp;lt;p&amp;gt;Mountain regions such as the Andes and the Himalayas are a hotspot of natural hazards. Many of them, in particular floods, landslides, and soil degradation, are related to extreme rainfall events. However, characterising rainfall is complicated by the extreme spatiotemporal gradients, and the scarcity of in situ observations. Characterising extreme rainfall events is particularly problematic because most existing rainfall records are only available at a low temporal resolution (daily or coarser). Here, we analyse records of a network of 77 tipping bucket rain gauges located in Ecuador, Peru, Bolivia and Nepal, with a data availability ranging between 1 and 10 years.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;From the raw data we derive rainfall intensities at 5 and 10 minute intervals using composite cubic spline interpolation and smoothing. We then compare those intensities with instantaneous measurements from the Global Precipitation Measurement (GPM) satellite mission. Although correlations are generally low, it is possible to find significant trends that make it possible to interpolate the observed intensities in space, and to generate rainfall intensity quantile maps for the wider high Andean region.&amp;lt;/p&amp;gt; </jats:p>

Conference paper

Drenkhan F, Ochoa-Tocachi BF, Rau P, Cachay W, Montoya N, Lavado W, Bonnesoeur V, Antiporta J, Valdivia G, Román F, Buytaert Wet al., 2020, Exploring nature-based adaptation options for improved water security in the deglaciating Andes of Peru

<jats:p> &amp;lt;p&amp;gt;In the tropical Andes, mountain communities and coastal livelihoods downstream strongly depend on glaciers and Andean ecosystems for their water security. Year-round streamflow from glaciers, high-altitude peat bogs and hydraulic infrastructure buffer water scarcity and discharge variability in many areas. Nonetheless, climatic and non-climatic stressors are altering the hydrological regime and exacerbating human vulnerabilities. In the Vilcanota-Urubamba basin (VUB) in Southern Peru, the overall glacier area has substantially decreased by 37% between 1988 and 2016. At the same time, water demand from growing population, irrigated agriculture and hydropower is considerably increasing. This development bears threats to local water security and several challenges to long-term water management and governance in a context of data scarcity and social conflicts arising from socioenvironmental grievances, and highlights the need for interdisciplinary and interlinked water resource research and management.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;In this context, the two projects &amp;lt;em&amp;gt;Water security and climate change adaptation in Peruvian glacier-fed river basins&amp;lt;/em&amp;gt; (RAHU) and &amp;lt;em&amp;gt;Natural Infrastructure for Water Security&amp;lt;/em&amp;gt; (NIWS) are collaborating at developing adaptation strategies to increase long-term water security in deglaciating basins in Peru. In the face of global environmental change, natural infrastructure &amp;amp;#8211; including forests, wetlands, and nature-based solutions &amp;amp;#8211; has been promoted as a buffer to attenuate the loss of hydrological ecosystem services caused by accelerated glacier shrinkage. Furthermore, natural infrastructure can provide a complement to man-made &amp;amp;#8216;grey&amp;amp;#8217; infrastructure enhancing its performance, lifespan, and adaptability and prov

Conference paper

Grainger S, Ochoa-Tocachi BF, Antiporta J, Dewulf A, Buytaert Wet al., 2020, Tailoring infographics on water resources through iterative, user-centered design: A case study in the Peruvian Andes, Water Resources Research, Vol: 56, ISSN: 0043-1397

Effective communication and knowledge sharing across stakeholder groups (e.g., science, government, business, civil society, farmers, and the general public) are essential for more informed water resource management. Visualizations and graphics are powerful tools to engage diverse groups with unfamiliar information. Despite this potential, the design of visuals within applied science settings often does not involve end‐user interaction or explicit consideration of their existing knowledge systems, perspective, requirements, and context of use. As a result, products are often difficult for users to understand and contextualize. While user interaction and the development of tailored visualizations is increasingly promoted as a potential remedy, limited empirical evidence exists that shows the potential impact and can guide the development of specific approaches. We piloted an iterative and user‐centered design methodology toward the tailoring of infographic‐style posters in the context of Peruvian water governance. To test whether tailoring demonstrably improves the perceived effectiveness of products, we designed three products that conveyed similar information but were tailored to three different audiences (an Andean agricultural, urban professional, and urban general). We then compared the tailored posters to those tailored to other audiences by means of interviews and user grading. We found that end‐users perceive products that have undergone tailoring as more interesting, clearer, and more useful than products designed without explicit user consideration. Our findings indicate that identifying groups with shared characteristics and requirements is key for effective tailoring. Our research provides empirical evidence to support the incorporation of user‐centered design methods in water resource management contexts.

Journal article

Ochoa-Tocachi BF, Buytaert W, 2020, Ancient water harvesting practices can help solve modern problems, The Science Breaker: Science Meets Society, Vol: 06

Journal article

Straatsma M, Droogers P, Hunink J, Berendrecht W, Buitink J, Buytaert W, Karssenberg D, Schmitz O, Sutanudjaja EH, van Beek Rens LPH, Vitolo C, Bierkens MFPet al., 2020, Global to regional scale evaluation of adaptation measures to reduce the future water gap, ENVIRONMENTAL MODELLING & SOFTWARE, Vol: 124, ISSN: 1364-8152

Journal article

Cuesta F, Tovar C, Llambi LD, Gosling WD, Halloy S, Carilla J, Muriel P, Meneses RI, Beck S, Ulloa-Ulloa C, Yager K, Aguirre N, Vinas P, Jacome J, Suarez-Duque D, Buytaert W, Pauli Het al., 2020, Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming, JOURNAL OF BIOGEOGRAPHY, Vol: 47, Pages: 408-420, ISSN: 0305-0270

Journal article

Ochoa-Tocachi B, Paul J, Buytaert W, 2020, Inclusive hydrology: how to maximize participation and actionable knowledge creation in water resources, AGU 2019 Fall Meeting, Publisher: Wiley

This year marks the centennial of the American Geophysical Union advancing Earth and space science and 89 years of hydrologic science. The last 100 years have seen science and technology dancing a harmonious and progressively accelerated waltz. Hydroelectric power generation has made widespread electrification possible, while the rise of electronics and the advent of computers have enabled hydrologists to exploit increasingly complex models. Scientists and engineers have conquered space, and now satellite-based products and remotely sensed data have become indispensable inputs for hydrometeorological forecasting. Yet several important elements that have accompanied humanity’s history – nature, culture, and people – have been relegated; and it is only very recently, in the face of modern challenges, that they have attracted substantial attention. The advent of robust, cheap, and low-maintenance sensing equipment provides unprecedented opportunities for data collection, especially in a citizen science context. While citizens have been present throughout the history of scientific practice, developments in sensing technology, data processing and visualization, and the communication of ideas and results, are creating a wide range of new opportunities for public participation in scientific research. Integrating societal knowledge with hydrologic science, however, is not only a task for the 21st century. Historically, many civilizations have developed local water harvesting and management practices that cope with water stress by using ancient and nature-based knowledge. Indeed, indigenous peoples developed solutions that were inspired and supported by nature, and use, or mimic, natural processes to contribute to improved water management and to safeguard their water security. Technological development and knowledge integration also have a more fundamental impact on the way in which hydrologic knowledge advances, how it flows between different actors, how

Conference paper

Heal KV, Bartosova A, Hipsey MR, Chen X, Buytaert W, Li H-Y, McGrane SJ, Gupta AB, Cudennec Cet al., 2020, Water quality: the missing dimension of water in the water-energy-food nexus (Reprinted from HYDROLOGICAL SCIENCES JOURNAL , vol 66, pg 745-758, 2021), HYDROLOGICAL SCIENCES JOURNAL, Vol: 65, ISSN: 0262-6667

Journal article

Yeguez M, Ablan M, Buytaert W, Acevedo D, Rodríguez M, Machado Det al., 2019, Modelado hidrológico de un páramo andino venezolano con afloramientos rocosos usando TOPMODEL, MASKANA, Vol: 10, Pages: 54-63, ISSN: 1390-6143

Journal article

Derin Y, Anagnostou E, Berne A, Borga M, Boudevillain B, Buytaert W, Chang C-H, Chen H, Delrieu G, Hsu YC, Lavado-Casimiro W, Manz B, Moges S, Nikolopoulos EI, Sahlu D, Salerno F, Rodriguez-Sanchez J-P, Vergara HJ, Yilmaz KKet al., 2019, Evaluation of GPM-era Global Satellite Precipitation Products over Multiple Complex Terrain Regions, REMOTE SENSING, Vol: 11

Journal article

Alemie TC, Tilahun SA, Ochoa-Tocachi BF, Schmitter P, Buytaert W, Parlange J-Y, Steenhuis TSet al., 2019, Predicting shallow groundwater tables for sloping highland aquifers, Water Resources Research, Vol: 55, Pages: 11088-11100, ISSN: 0043-1397

While hydrological science has made great strides forward during the last 50 years with the advance of computing power and availability of satellite images, much is unknown about the sustainable development of water for irrigation, domestic use, and livestock consumption for millions of households in the developing world. Specifically, quantification of shallow underground water resources for irrigation in highland regions remains challenging. The objective is to better understand the hydrology of highland watersheds with sloping hillside aquifers. Therefore, we present a subsurface flow model for hillside aquifers with recharge that varied from day to day. Recharge to the aquifer was estimated by the Thornthwaite Mather procedure. A characteristic time was identified for travel time of water flowing from the upper part of the hillside to the river or well. Using the method of characteristics, we found that the height of shallow groundwater level can be predicted by determining the total recharge over the characteristic time divided by drainable porosity. We apply the model to farmer‐dug wells in the Ethiopian highlands using observed rainfall, potential evaporation, and a fitted travel time. We find that the model performs well with maximum water table heights being determined by the soil surface and minimum heights by the presence or absence of volcanic dikes downhill. Our application shows that unless the water is ponded behind a natural or artificial barrier, hillslope aquifers are unable to provide a continuous source of water during the long, dry season. This clearly limits any irrigation development in the highlands from shallow sloping groundwater.

Journal article

Agrawal S, Chakraborty A, Karmakar N, Moulds S, Mijic A, Buytaert Wet al., 2019, Effects of winter and summer-time irrigation over Gangetic Plain on the mean and intra-seasonal variability of Indian summer monsoon (correction to vol 53, pg 3147, 2019), Climate Dynamics, Vol: 53, Pages: 6519-6519, ISSN: 0930-7575

Journal article

Dewulf A, Karpouzoglou T, Warner J, Wesselink A, Mao F, Vos J, Tamas P, Groot AE, Heijmans A, Ahmed F, Hoang L, Vij S, Buytaert Wet al., 2019, The power to define resilience in social-hydrological systems: Toward a power-sensitive resilience framework, WILEY INTERDISCIPLINARY REVIEWS-WATER, Vol: 6, ISSN: 2049-1948

Journal article

Agrawal S, Chakraborty A, Karmakar N, Moulds S, Mijic A, Buytaert Wet al., 2019, Effects of winter and summer-time irrigation over Gangetic Plain on the mean and intra-seasonal variability of Indian summer monsoon, Climate Dynamics, Vol: 53, Pages: 3147-3166, ISSN: 0930-7575

The decreasing trend in rainfall in the last few decades over the Indo-Gangetic Plains of northern India as observed in ground-based observations puts increasing stress on groundwater because irrigation uses up to 70% of freshwater resources. In this work, we have analyzed the effects of extensive irrigation over the Gangetic Plains on the seasonal mean and intra-seasonal variability of the Indian summer monsoon, using a general circulation model and a very high-resolution soil moisture dataset created using extensive field observations in a state-of-the-art hydrological model. We find that the winter-time (November–March) irrigation has a positive feedback on the Indian summer monsoon through large scale circulation changes. These changes are analogous to a positive North Atlantic Oscillation (NAO) phase during winter months. The effects of the positive NAO phase persist from winter to spring through widespread changes in surface conditions over western and central Asia, which makes the pre-monsoon conditions suitable for a subsequent good monsoon over India. Winter-time irrigation also resulted in a reduction of low frequency intra-seasonal variability over the Indian region during the monsoon season. However, when irrigation is practiced throughout the year, a decrease in June–September precipitation over the Gangetic Plains, significant at 95% level, is noted as compared to the no-irrigation scenario. This decrease is attributed to the increase in local soil moisture due to irrigation, which results in a southward shift of the moisture convergence zone during the active phase of monsoon, decreasing its mean and intraseasonal variability. Interestingly, these changes show a remarkable similarity to the long-term trend in observed rainfall spatial pattern and low-frequency variability. Our results suggest that with a decline in the mean summer precipitation and stressed groundwater resources in the Gangetic Plains, the water crisis could exacerbate, wi

Journal article

Charani E, Cunnington AJ, Yousif AHA, Ahmed MS, Ahmed AEM, Babiker S, Bedri S, Buytaert W, Crawford MA, Elbashir MI, Elhag K, Elsiddig KE, Hakim N, Johnson MR, Miras AD, Swar MO, Templeton MR, Taylor-Robinson SDet al., 2019, In transition: current health challenges and priorities in Sudan, BMJ Global Health, Vol: 4:e001723, ISSN: 2059-7908

A recent symposium and workshop in Khartoum, the capital of the Republic of Sudan, brought together broad expertise from three universities to address the current burden of communicable and non-communicable diseases facing the Sudanese healthcare system. These meetings identified common challenges that impact the burden of diseases in the country, most notably gaps in data and infrastructure which are essential to inform and deliver effective interventions. Non-communicable diseases, including obesity, type 2 diabetes, renal disease and cancer are increasing dramatically, contributing to multimorbidity. At the same time, progress against communicable diseases has been slow, and the burden of chronic and endemic infections remains considerable, with parasitic diseases (such as malaria, leishmaniasis and schistosomiasis) causing substantial morbidity and mortality. Antimicrobial resistance has become a major threat throughout the healthcare system, with an emerging impact on maternal, neonatal, and paediatric populations. Meanwhile, malnutrition, micronutrient deficiency, and poor perinatal outcomes remain common and contribute to a lifelong burden of disease. These challenges echo the UN sustainable development goals and concentrating on them in a unified strategy will be necessary to address the national burden of disease. At a time when the country is going through societal and political transition, we draw focus on the country and the need for resolution of its healthcare needs.

Journal article

Bloeschl G, Bierkens MFP, Chambel A, Cudennec C, Destouni G, Fiori A, Kirchner JW, McDonnell JJ, Savenije HHG, Sivapalan M, Stumpp C, Toth E, Volpi E, Carr G, Lupton C, Salinas J, Szeles B, Viglione A, Aksoy H, Allen ST, Amin A, Andreassian V, Arheimer B, Aryal SK, Baker V, Bardsley E, Barendrecht MH, Bartosova A, Batelaan O, Berghuijs WR, Beven K, Blume T, Bogaard T, de Amorim PB, Boettcher ME, Boulet G, Breinl K, Brilly M, Brocca L, Buytaert W, Castellarin A, Castelletti A, Chen X, Chen Y, Chen Y, Chifflard P, Claps P, Clark MP, Collins AL, Croke B, Dathe A, David PC, de Barros FPJ, de Rooij G, Di Baldassarre G, Driscoll JM, Duethmann D, Dwivedi R, Eris E, Farmer WH, Feiccabrino J, Ferguson G, Ferrari E, Ferraris S, Fersch B, Finger D, Foglia L, Fowler K, Gartsman B, Gascoin S, Gaume E, Gelfan A, Geris J, Gharari S, Gleeson T, Glendell M, Bevacqua AG, Gonzalez-Dugo MP, Grimaldi S, Gupta AB, Guse B, Han D, Hannah D, Harpold A, Haun S, Heal K, Helfricht K, Herrnegger M, Hipsey M, Hlavacikova H, Hohmann C, Holko L, Hopkinson C, Hrachowitz M, Illangasekare TH, Inam A, Innocente C, Istanbulluoglu E, Jarihani B, Kalantari Z, Kalvans A, Khanal S, Khatami S, Kiesel J, Kirkby M, Knoben W, Kochanek K, Kohnova S, Kolechkina A, Krause S, Kreamer D, Kreibich H, Kunstmann H, Lange H, Liberato MLR, Lindquist E, Link T, Liu J, Loucks DP, Luce C, Mahe G, Makarieva O, Malard J, Mashtayeva S, Maskey S, Mas-Pla J, Mavrova-Guirguinova M, Mazzoleni M, Mernild S, Misstear BD, Montanari A, Mueller-Thomy H, Nabizadeh A, Nardi F, Neale C, Nesterova N, Nurtaev B, Odongo VO, Panda S, Pande S, Pang Z, Papacharalampous G, Perrin C, Pfister L, Pimentel R, Polo MJ, Post D, Sierra CP, Ramos M-H, Renner M, Reynolds JE, Ridolfi E, Rigon R, Riva M, Robertson DE, Rosso R, Roy T, Sa JHM, Salvadori G, Sandells M, Schaefli B, Schumann A, Scolobig A, Seibert J, Servat E, Shafiei M, Sharma A, Sidibe M, Sidle RC, Skaugen T, Smith H, Spiessl SM, Stein L, Steinsland I, Strasser U, Su B, Szolgay J, Tarboton Det al., 2019, Twenty-three unsolved problems in hydrology (UPH) - a community perspective, HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, Vol: 64, Pages: 1141-1158, ISSN: 0262-6667

Journal article

Regmi S, Bhusal J, Gurung P, Zulkafli Z, Karpouzoglou T, Ochoa Tocachi B, Buytaert W, Mao Fet al., 2019, Learning to cope with water variability through participatory monitoring: the case study of the Mountainous region, Nepal, Meteorology Hydrology and Water Management, Vol: 7, Pages: 49-61, ISSN: 2299-3835

Participatory monitoring allows communities to understand the use and management of local water resources and at the same time develop a sense of ownership of environmental information. The data generated through participatory monitoring of stream flow and rainfall generate evidences to corroborate local people's experiences with changing water resources patterns. In this study we evaluate the potential of participatory monitoring of hydrological variables to improve scarce water supply utilization in agriculture. The case study site is the Mustang district in Nepal, which is located in the upper Kaligandaki river basin in the Himalayas with unique and complex geographical and climatic features. This region is characterized by a semi-arid climate with total annual precipitation of less than 300 mm. Water supply, agricultural land, and livestock grazing are the key ecosystem services that underpin livelihood security of the local population, particularly socio-economically vulnerable groups. An analysis of the measured stream flow data indicate that annual flow of water in the stream can meet the current crop irrigation water needs for the agricultural land of the research site. The data provide local farmers a new way of understanding local water needs. Participatory monitoring would contribute to an optimization of the use of ecosystem services to support economic development and livelihood improvement.

Journal article

Ochoa-Tocachi BF, Bardales JD, Antiporta J, Pérez K, Acosta L, Mao F, Zulkafli Z, Gil-Ríos J, Angulo O, Grainger S, Gammie G, De Bièvre B, Buytaert Wet al., 2019, Potential contributions of pre-Inca infiltration infrastructure to Andean water security, Nature Sustainability, Vol: 2, Pages: 584-593, ISSN: 2398-9629

Water resources worldwide are under severe stress from increasing climate variability and human pressures. In the tropical Andes, pre-Inca cultures developed nature-based water harvesting technologies to manage drought risks under natural climatic extremes. While these technologies have gained renewed attention as a potential strategy to increase water security, limited scientific evidence exists about their potential hydrological contributions at catchment scale. Here, we evaluate a 1,400-year-old indigenous infiltration enhancement system that diverts water from headwater streams onto mountain slopes during the wet season to enhance the yield and longevity of downslope natural springs. Infiltrated water is retained for an average of 45 d before resurfacing, confirming the system’s ability to contribute to dry-season flows. We estimate that upscaling the system to the source-water areas of the city of Lima can potentially delay 99 × 106 m3 yr−1 of streamflow and increase dry-season flows by 7.5% on average, which may provide a critical complement to conventional engineering solutions for water security.

Journal article

Uprety M, Ochoa-Tocachi BF, Paul JD, Regmi S, Buytaert Wet al., 2019, Improving water resources management using participatory monitoring in a remote mountainous region of Nepal, Journal of Hydrology Regional Studies, Vol: 23, ISSN: 2214-5818

Study RegionWe interrogate the water resources of the Upper Kaligandaki River Basin (UKGRB), in the remote Mustang District of northwestern Nepal. The Nepal Himalayas are a major reservoir of freshwater; yet the impediments to its exploitation by local inhabitants are manifold, including weak governance structures, steep and irregular terrain, and frequent natural hazards that are linked to climate change. The UKGRB is characterised by its extreme fragility, paucity of water and water-related data, and enormous variability of the effects of climate change on glaciers through time and space.Study FocusThe purpose of this paper is to elucidate catchment hydrology and local flow variability, before demonstrating the ways in which sustainable water resource management (WRM) can be achieved regionally.New Hydrological Insights for the RegionWe present the local crop water balance, and suggest methods to reduce crop water requirements and to ensure a more equitable distribution of available seasonal flow. We also propose a series of long-term changes that are needed to secure sustainability. Then, we suggest that the principles of citizen science can help to improve the spatial coverage of data, generating new hydrological time series (e.g. river discharge), which can aid local decision makers in the WRM realm (e.g. irrigation scheduling). This approach has the potential to be scaled-up across the entire UKGRB (and, indeed, Nepal as a whole).

Journal article

Grainger S, Hommes L, Karpouzoglou T, Perez K, Buytaert W, Dewulf Aet al., 2019, The development and intersection of highland-coastal scale frames: a case study of water governance in central Peru, Journal of Environmental Policy and Planning, Vol: 21, Pages: 373-390, ISSN: 1522-7200

Scale framing makes an important difference to how complex environmental policy issues are defined and understood by different groups of actors. Increasing urban water demand and uncertain future climatic conditions in the Andes present major water governance challenges for the coastal regions of Peru. An understudied dimension of Peruvian water governance is how scale framing shapes the way problems are defined, and solutions are pursued. Here, we aim to strengthen the understanding of scale framing as it relates to highland-coastal interactions in central Peru between 2004 and 2015. By analysing this period of significant water governance reforms, we identify five prominent water-related frame dimensions and three differently scaled policy storylines and reveal how they developed and intersected over time. The storylines, supported by particular visualisations, either foreground ‘urbanshed’-level investment in water supply infrastructure, community-level cultural restoration for improved local agricultural production, or nationwide watershed-level financial mechanisms for highland ecosystem conservation. Our study shows how the intersection of these storylines at different moments during the policy process often had a strengthening effect, creating a coalition of actors who were then able to generate sufficient momentum and support within the Peruvian government for the implementation of conservation-based watershed investments.

Journal article

Ochoa-Tocachi B, Alemie T, Guzman CD, Tilahun SA, Zimale FA, Buytaert W, Steenhuis TSet al., 2019, Sensitivity analysis of the parameter-efficient distributed (PED) model for discharge and sediment concentration estimation in degraded humid landscapes, Land Degradation and Development, Vol: 30, Pages: 151-165, ISSN: 1085-3278

Sustainable development in degraded landscapes in the humid tropics require effective soil and water management practices. Coupled hydrological‐erosion models have been used to understand and predict the underlying processes at watershed scale and the effect of human interventions. One prominent tool is the parameter‐efficient distributed (PED) model, which improves on other models by considering a saturation‐excess runoff generation driving erosion and sediment transport in humid climates. This model has been widely applied at different scales for the humid monsoonal climate of the Ethiopian Highlands, with good success in estimating discharge and sediment concentrations. However, previous studies performed manual calibration of the involved parameters without reporting sensitivity analyses or assessing equifinality. The aim of this article is to provide a multi‐objective global sensitivity analysis of the PED model using automatic random sampling implemented in the SAFE Toolbox. We find that relative parameter sensitivity depends greatly on the purpose of model application and the outcomes used for its evaluation. Five of the 13 PED model parameters are insensitive for improving model performance. Additionally, associating behavioural parameter values with a clear physical meaning provides slightly better results and helps interpretation. Lastly, good performance in one module does not translate directly into good performance in the other module. We interpret these results in terms of the represented hydrological and erosion processes and recommend field data to inform model calibration and validation, potentially improving land degradation understanding and prediction and supporting decision‐making for soil and water conservation strategies in degraded humid landscapes.

Journal article

Zogheib C, Ochoa-Tocachi BF, Paul JD, Hannah DM, Clark J, Buytaert Wet al., 2018, Exploring a water data, evidence, and governance theory, Water Security, Vol: 4-5, Pages: 19-25, ISSN: 2468-3124

The hydrological evidence on which water resource management and broader governance decisions are based is often very limited. This issue is especially pronounced in lower- and middle-income countries, where not only data are scarce but where pressure on water resources is often already very high and increasing. Historically, several governance theories have been put forward to examine water resource management. One of the more influential is Elinor Ostrom’s theory of common-pool resources. However while used very widely, the underlying principles of Ostrom’s approach make pronounced implicit assumptions about the role of data and evidence in common-pool resource systems. We argue here this overlooks how power relations, user characteristics, system arrangements, and technological advances modulate fundamental associations between data, evidence, and governance, which we contend need to be considered explicitly. Examining the case of water allocations in Quito, Ecuador, we develop a set of concrete criteria to inform the ways in which Ostrom’s principles can be applied in a data-scarce, institutionally complex, polycentric context. By highlighting the variable impact of data availability on subsequent evidence generation, these criteria have the potential to test the applicability of common assumptions about how to achieve water security in a developmental context, and hence offer the possibility of developing a more encompassing theory about the interactions between water data, evidence, and governance.

Journal article

Buytaert W, Vitolo C, Fry M, Spencer M, Gauster Tet al., 2018, cvitolo/rnrfa: rnrfa v1.5

rnrfa: An R package to Retrieve, Filter and Visualize Data from the UK National River Flow Archive

Software

De Stercke S, Mijic A, Buytaert W, Chaturvedi Vet al., 2018, Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective, Applied Energy, Vol: 230, Pages: 615-626, ISSN: 0306-2619

Cities are concentrations of demand to water and energy systems that rely on resources under increasing pressure from scarcity and climate change mitigation targets. They are linked in many ways across their different components, the collection of which is termed a nexus. In industrialised countries, the residential end-use component of the urban water-energy nexus has been identified as significant. However, the effect of the end-use water and energy interdependence on urban dynamics had not been studied. In this work, a novel system dynamics model is developed with an explicit representation of the water-energy interactions at the residential end use and their influence on the demand for resources. The model includes an endogenous carbon tax based climate change mitigation policy which aims to meet carbon targets by reducing consumer demand through price. It also encompasses water resources planning with respect to system capacity and supply augmentation. Using London as a case study, we show that the inclusion of end-use interactions has a major impact on the projections of water sector requirements. In particular, future water demand per capita is lower, and less supply augmentation is needed than would be planned for without considering the interactions. We find that deep decarbonisation of electricity is necessary to maintain an acceptable quality of life while remaining within water and greenhouse gas emissions constraints. The model results show a clear need for consideration of the end-use level water-energy interactions in policy analysis. The modelling tool provides a base for this that can be adapted to the context of any industrialised country.

Journal article

Shukla AK, Ojha CSP, Mijic A, Buytaert W, Pathak S, Garg RD, Shukla Set al., 2018, Population growth, land use and land cover transformations, and water quality nexus in the Upper Ganga River basin, HYDROLOGY AND EARTH SYSTEM SCIENCES, Vol: 22, Pages: 4745-4770, ISSN: 1027-5606

The Upper Ganga River basin is socioeconomically the most important river basin in India and is highly stressed in terms of water resources due to uncontrolled land use and land cover (LULC) activities. This study presents a comprehensive set of analyses to evaluate the population growth, LULC transformations, and water quality nexus for sustainable development in this river basin. The study was conducted at two spatial scales: basin scale and district scale. First, population data were analyzed statistically to study demographic changes, followed by LULC change detection over the period of February–March 2001 to 2012 (Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data) using remote sensing and geographical information system (GIS) techniques. Trends and spatiotemporal variations in monthly water quality parameters, viz. biological oxygen demand (BOD), dissolved oxygen (DO, measured in percentage), fluoride (F), hardness (CaCO3), pH, total coliform bacteria and turbidity, were studied using the Mann–Kendall rank test and an overall index of pollution (OIP) developed specifically for this region, respectively. A relationship was deciphered between LULC classes and OIP using multivariate techniques, viz. Pearson's correlation and multiple linear regression. From the results, it was observed that population has increased in the river basin. Therefore, significant and characteristic LULC changes were observed. The river became polluted in both rural and urban areas. In rural areas, pollution is due to agricultural practices, mainly fertilizers, whereas in urban areas it is mainly contributed from domestic and industrial wastes. Water quality degradation has occurred in the river basin, and consequently the health status of the river has also changed from acceptable to slightly polluted in urban areas. Multiple linear regression models developed for the Upper Ganga River basin could successfully predict status of the water quality, i.e., OIP, using LULC clas

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00610263&limit=30&person=true&page=3&respub-action=search.html