Imperial College London


Faculty of Natural SciencesThe Grantham Institute for Climate Change

Lecturer in Climate Change and the Environment



+44 (0)20 7594 1034y.plancherel




Sherfield BuildingSouth Kensington Campus






BibTex format

author = {Skinner, LC and Sadekov, A and Brandon, M and Greaves, M and Plancherel, Y and de, la Fuente M and Gottschalk, J and Souanef-Ureta, S and Sevilgen, S and Scrivner, AE},
doi = {10.1016/j.gca.2018.10.027},
journal = {Geochimica et Cosmochimica Acta},
pages = {118--132},
title = {Rare Earth Elements in early-diagenetic foraminifer 'coatings': Pore-water controls and potential palaeoceanographic applications},
url = {},
volume = {245},
year = {2019}

RIS format (EndNote, RefMan)

AB - Rare Earth Element (REE) distributions in the ocean bear the fingerprints of several key environmental processes, including vertical particle/organic carbon fluxes, water column/pore-water oxygenation and ocean transports. The use of ‘fossil’ REE analyses in the service of palaeoceanography as redox, water transport or nutrient cycling ‘proxies’ has long been a tantalizing possibility. Here we demonstrate the application of a novel laser-ablation microanalysis approach for the rapid and accurate measurement of the REE composition of early diagenetic ‘coatings’ on fossil foraminifera. By applying this new method to a range of core-top and multi-core samples, we show that ‘authigenic’ REE enrichments on planktonic foraminifer surfaces (REEfs) reflect a primary seawater signature that becomes overprinted during sediment burial due to early diagenetic processes that control the flux of REEs to pore-fluids. Thus ‘light’ REEs (LREEs), and eventually ‘middle’ REEs (MREEs) are generally enriched in foraminifer 'coatings' relative to seawater, while Ce-anomalies (Ce/Ce) recorded in surface sediments are typically more positive than local seawater values and are further ‘eroded’ during burial with the onset of anoxic conditions in the sediment. Similar patterns have previously been observed in pore-fluid measurements. Indeed, we show that Mn and Fe concentrations measured in foraminifer ‘coatings’ track the availability of these elements in pore-water, indicating that they are not associated with a secondary oxide phase. We propose that these elements, along with REEs are instead adsorbed directly from pore-fluids. In contrast, U in authigenic coatings tracks the removal of this element from solution under sub-oxic conditions, supporting the use of U/Ca in foraminifer coatings as a redox proxy. Although our results confirm a significant early diagenetic influence on REEfs, we also
AU - Skinner,LC
AU - Sadekov,A
AU - Brandon,M
AU - Greaves,M
AU - Plancherel,Y
AU - de,la Fuente M
AU - Gottschalk,J
AU - Souanef-Ureta,S
AU - Sevilgen,S
AU - Scrivner,AE
DO - 10.1016/j.gca.2018.10.027
EP - 132
PY - 2019///
SN - 0016-7037
SP - 118
TI - Rare Earth Elements in early-diagenetic foraminifer 'coatings': Pore-water controls and potential palaeoceanographic applications
T2 - Geochimica et Cosmochimica Acta
UR -
UR -
UR -
VL - 245
ER -