Imperial College London

DR YUTONG SAMUEL CAI

Faculty of MedicineSchool of Public Health

Honorary Research Fellow
 
 
 
//

Contact

 

yutong.cai

 
 
//

Location

 

155Wright Fleming WingSt Mary's Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Zhang:2022:10.1016/j.scitotenv.2022.157249,
author = {Zhang, H and Fan, Y and Han, Y and Yan, L and Zhou, B and Chen, W and Cai, Y and Chan, Q and Zhu, T and Kelly, FJ and Barratt, B and AIRLESS, Team B},
doi = {10.1016/j.scitotenv.2022.157249},
journal = {Science of the Total Environment},
title = {Partitioning indoor-generated and outdoor-generated PM2.5 from real-time residential measurements in urban and peri-urban Beijing},
url = {http://dx.doi.org/10.1016/j.scitotenv.2022.157249},
volume = {845},
year = {2022}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Limited number of projects have attempted to partition and quantify indoor- and outdoor-generated PM2.5 (PM2.5ig and PM2.5og) where strong indoor sources (e.g., solid fuel, tobacco smoke, or kerosene) exist. This study aimed to apply and refine a previous recursive model used to derive infiltration efficiency (Finf) to additionally partition pollution concentrations into indoor and outdoor origins within residences challenged by elevated ambient and indoor combustion-related sources. During the winter of 2016 and summer of 2017 we collected residential measurements in 72 homes in urban and peri-urban Beijing, 12 of which had additional paired residential outdoor measurements during the summer season. Local ambient measurements were collected throughout. We then compared the calculated PM2.5ig and using (i) outdoor and (ii) ambient measurements as model inputs. The results from outdoor and ambient measurements were not significantly different, which suggests that ambient measurements can be used as a model input for pollution origin partitioning when paired outdoor measurements are not available. From the results calculated using ambient measurements, the mean percentage contribution of indoor-generated PM2.5 was 19 % (σ = 22 %), and 7 % (11 %) of the total indoor PM2.5 for peri-urban and urban homes respectively during the winter; and 18 % (18 %) and 6 % (10 %) of the total indoor PM2.5 during the summer. Partitioning pollution into PM2.5ig and PM2.5og is important to allow investigation of distinct associations between health outcomes and particulate mixes, often with different physiochemical composition and toxicity. It will also inform targeted interventions that impact indoor and outdoor sources of pollution (e.g., domestic fuel switching vs. power generation), which are typically radically different in design and implementation.
AU - Zhang,H
AU - Fan,Y
AU - Han,Y
AU - Yan,L
AU - Zhou,B
AU - Chen,W
AU - Cai,Y
AU - Chan,Q
AU - Zhu,T
AU - Kelly,FJ
AU - Barratt,B
AU - AIRLESS,Team B
DO - 10.1016/j.scitotenv.2022.157249
PY - 2022///
SN - 0048-9697
TI - Partitioning indoor-generated and outdoor-generated PM2.5 from real-time residential measurements in urban and peri-urban Beijing
T2 - Science of the Total Environment
UR - http://dx.doi.org/10.1016/j.scitotenv.2022.157249
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000836115400003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=a2bf6146997ec60c407a63945d4e92bb
UR - https://www.sciencedirect.com/science/article/pii/S0048969722043479
UR - http://hdl.handle.net/10044/1/110127
VL - 845
ER -