Imperial College London

DrZhiweiJiang

Faculty of EngineeringDepartment of Chemical Engineering

 
 
 
//

Contact

 

z.jiang12

 
 
//

Location

 

ACE ExtensionSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

1 results found

Jiang Z, Karan S, Livingston A, 2018, Water transport through ultrathin polyamide nanofilms used for reverse osmosis, Advanced Materials, Vol: 30, ISSN: 0935-9648

Thin‐film composite membranes comprising a polyamide nanofilm separating layer on a support material are state of the art for desalination by reverse osmosis. Nanofilm thickness is thought to determine the rate of water transport through the membranes; although due to the fast and relatively uncontrolled interfacial polymerization reaction employed to form these nanofilms, they are typically crumpled and the separating layer is reported to be ≈50–200 nm thick. This crumpled structure has confounded exploration of the independent effects of thickness, permeation mechanism, and the support material. Herein, smooth sub‐8 nm polyamide nanofilms are fabricated at a free aqueous–organic interface, exhibiting chemical homogeneity at both aqueous and organic facing surfaces. Transfer of these ultrathin nanofilms onto porous supports provides fast water transport through the resulting nanofilm composite membranes. Manipulating the intrinsic nanofilm thickness from ≈15 down to 8 nm reveals that water permeance increases proportionally with the thickness decrease, after which it increases nonlinearly to 2.7 L m−2 h−1 bar−1 as the thickness is further reduced to ≈6 nm.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00551318&limit=30&person=true