Imperial College London

Dr Zulma M Cucunubá

Faculty of MedicineSchool of Public Health

Honorary Lecturer
 
 
 
//

Contact

 

zulma.cucunuba

 
 
//

Location

 

G27Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

118 results found

Mellan T, Hoeltgebaum H, Mishra S, Whittaker C, Schnekenberg R, Gandy A, Unwin H, Vollmer M, Coupland H, Hawryluk I, Rodrigues Faria N, Vesga J, Zhu H, Hutchinson M, Ratmann O, Monod M, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Fraser K, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Okell L, Dorigatti I, Walker P, Ghani A, Riley S, Ferguson N, Donnelly C, Flaxman S, Bhatt Set al., 2020, Report 21: Estimating COVID-19 cases and reproduction number in Brazil

Brazil is an epicentre for COVID-19 in Latin America. In this report we describe the Brazilian epidemicusing three epidemiological measures: the number of infections, the number of deaths and the reproduction number. Our modelling framework requires sufficient death data to estimate trends, and wetherefore limit our analysis to 16 states that have experienced a total of more than fifty deaths. Thedistribution of deaths among states is highly heterogeneous, with 5 states—São Paulo, Rio de Janeiro,Ceará, Pernambuco and Amazonas—accounting for 81% of deaths reported to date. In these states, weestimate that the percentage of people that have been infected with SARS-CoV-2 ranges from 3.3% (95%CI: 2.8%-3.7%) in São Paulo to 10.6% (95% CI: 8.8%-12.1%) in Amazonas. The reproduction number (ameasure of transmission intensity) at the start of the epidemic meant that an infected individual wouldinfect three or four others on average. Following non-pharmaceutical interventions such as school closures and decreases in population mobility, we show that the reproduction number has dropped substantially in each state. However, for all 16 states we study, we estimate with high confidence that thereproduction number remains above 1. A reproduction number above 1 means that the epidemic isnot yet controlled and will continue to grow. These trends are in stark contrast to other major COVID19 epidemics in Europe and Asia where enforced lockdowns have successfully driven the reproductionnumber below 1. While the Brazilian epidemic is still relatively nascent on a national scale, our resultssuggest that further action is needed to limit spread and prevent health system overload.

Report

Vollmer M, Mishra S, Unwin H, Gandy A, Melan T, Bradley V, Zhu H, Coupland H, Hawryluk I, Hutchinson M, Ratmann O, Monod M, Walker P, Whittaker C, Cattarino L, Ciavarella C, Cilloni L, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Brazeau N, Charles G, Cooper L, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Eaton J, van Elsland S, Fitzjohn R, Gaythorpe K, Green W, Hayes S, Imai N, Jeffrey B, Knock E, Laydon D, Lees J, Mangal T, Mousa A, Nedjati Gilani G, Nouvellet P, Olivera Mesa D, Parag K, Pickles M, Thompson H, Verity R, Walters C, Wang H, Wang Y, Watson O, Whittles L, Xi X, Ghani A, Riley S, Okell L, Donnelly C, Ferguson N, Dorigatti I, Flaxman S, Bhatt Set al., 2020, Report 20: A sub-national analysis of the rate of transmission of Covid-19 in Italy

Italy was the first European country to experience sustained local transmission of COVID-19. As of 1st May 2020, the Italian health authorities reported 28; 238 deaths nationally. To control the epidemic, the Italian government implemented a suite of non-pharmaceutical interventions (NPIs), including school and university closures, social distancing and full lockdown involving banning of public gatherings and non essential movement. In this report, we model the effect of NPIs on transmission using data on average mobility. We estimate that the average reproduction number (a measure of transmission intensity) is currently below one for all Italian regions, and significantly so for the majority of the regions. Despite the large number of deaths, the proportion of population that has been infected by SARS-CoV-2 (the attack rate) is far from the herd immunity threshold in all Italian regions, with the highest attack rate observed in Lombardy (13.18% [10.66%-16.70%]). Italy is set to relax the currently implemented NPIs from 4th May 2020. Given the control achieved by NPIs, we consider three scenarios for the next 8 weeks: a scenario in which mobility remains the same as during the lockdown, a scenario in which mobility returns to pre-lockdown levels by 20%, and a scenario in which mobility returns to pre-lockdown levels by 40%. The scenarios explored assume that mobility is scaled evenly across all dimensions, that behaviour stays the same as before NPIs were implemented, that no pharmaceutical interventions are introduced, and it does not include transmission reduction from contact tracing, testing and the isolation of confirmed or suspected cases. We find that, in the absence of additional interventions, even a 20% return to pre-lockdown mobility could lead to a resurgence in the number of deaths far greater than experienced in the current wave in several regions. Future increases in the number of deaths will lag behind the increase in transmission intensity and so a

Report

Ainslie KEC, Walters CE, Fu H, Bhatia S, Wang H, Xi X, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland SL, FitzJohn R, Gaythorpe K, Ghani AC, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati-Gilani G, Okell LC, Siveroni I, Thompson HA, Unwin HJT, Verity R, Vollmer M, Walker PGT, Wang Y, Watson OJ, Whittaker C, Winskill P, Donnelly CA, Ferguson NM, Riley Set al., 2020, Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment [version 1; peer review: 2 approved], Wellcome Open Res, Vol: 5, ISSN: 2398-502X

Background: The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. By 24 March 2020, over 440,000 cases and almost 20,000 deaths had been reported worldwide. In response to the fast-growing epidemic, which began in the Chinese city of Wuhan, Hubei, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. These interventions have impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic was not clear. Methods: Using daily reported cases from mainland China and Hong Kong SAR, we estimated transmissibility over time and compared it to daily within-city movement, as a proxy for economic activity. Results: Initially, within-city movement and transmission were very strongly correlated in the five mainland provinces most affected by the epidemic and Beijing. However, that correlation decreased rapidly after the initial sharp fall in transmissibility. In general, towards the end of the study period, the correlation was no longer apparent, despite substantial increases in within-city movement. A similar analysis for Hong Kong shows that intermediate levels of local activity were maintained while avoiding a large outbreak. At the very end of the study period, when China began to experience the re-introduction of a small number of cases from Europe and the United States, there is an apparent up-tick in transmission. Conclusions: Although these results do not preclude future substantial increases in incidence, they suggest that after very intense social distancing (which resulted in containment), China successfully exited its lockdown to some degree. Elsewhere, movement data are being used as proxies for economic activity to assess the impact of interventions. The results presented here illustrate how the eventual decorrelation between transmission and movement is likely a key feature of successful COVID-19 exit strategies.

Journal article

Grassly N, Pons Salort M, Parker E, White P, Ainslie K, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Brazeau N, Cattarino L, Ciavarella C, Cooper L, Coupland H, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Djaafara A, Donnelly C, Dorigatti I, van Elsland S, Ferreira Do Nascimento F, Fitzjohn R, Fu H, Gaythorpe K, Geidelberg L, Green W, Hallett T, Hamlet A, Hayes S, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Lees J, Mangal T, Mellan T, Mishra S, Nedjati Gilani G, Nouvellet P, Okell L, Ower A, Parag K, Pickles M, Ragonnet-Cronin M, Stopard I, Thompson H, Unwin H, Verity R, Vollmer M, Volz E, Walker P, Walters C, Wang H, Wang Y, Watson O, Whittaker C, Whittles L, Winskill P, Xi X, Ferguson Net al., 2020, Report 16: Role of testing in COVID-19 control

The World Health Organization has called for increased molecular testing in response to the COVID-19 pandemic, but different countries have taken very different approaches. We used a simple mathematical model to investigate the potential effectiveness of alternative testing strategies for COVID-19 control. Weekly screening of healthcare workers (HCWs) and other at-risk groups using PCR or point-of-care tests for infection irrespective of symptoms is estimated to reduce their contribution to transmission by 25-33%, on top of reductions achieved by self-isolation following symptoms. Widespread PCR testing in the general population is unlikely to limit transmission more than contact-tracing and quarantine based on symptoms alone, but could allow earlier release of contacts from quarantine. Immunity passports based on tests for antibody or infection could support return to work but face significant technical, legal and ethical challenges. Testing is essential for pandemic surveillance but its direct contribution to the prevention of transmission is likely to be limited to patients, HCWs and other high-risk groups.

Report

Ainslie K, Walters C, Fu H, Bhatia S, Wang H, Baguelin M, Bhatt S, Boonyasiri A, Boyd O, Cattarino L, Ciavarella C, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, van Elsland S, Fitzjohn R, Gaythorpe K, Geidelberg L, Ghani A, Green W, Hamlet A, Hinsley W, Imai N, Jorgensen D, Knock E, Laydon D, Nedjati Gilani G, Okell L, Siveroni I, Thompson H, Unwin H, Verity R, Vollmer M, Walker P, Wang Y, Watson O, Whittaker C, Winskill P, Xi X, Donnelly C, Ferguson N, Riley Set al., 2020, Report 11: Evidence of initial success for China exiting COVID-19 social distancing policy after achieving containment

The COVID-19 epidemic was declared a Global Pandemic by WHO on 11 March 2020. As of 20 March 2020, over 254,000 cases and 10,000 deaths had been reported worldwide. The outbreak began in the Chinese city of Wuhan in December 2019. In response to the fast-growing epidemic, China imposed strict social distancing in Wuhan on 23 January 2020 followed closely by similar measures in other provinces. At the peak of the outbreak in China (early February), there were between 2,000 and 4,000 new confirmed cases per day. For the first time since the outbreak began there have been no new confirmed cases caused by local transmission in China reported for five consecutive days up to 23 March 2020. This is an indication that the social distancing measures enacted in China have led to control of COVID-19 in China. These interventions have also impacted economic productivity in China, and the ability of the Chinese economy to resume without restarting the epidemic is not yet clear. Here, we estimate transmissibility from reported cases and compare those estimates with daily data on within-city movement, as a proxy for economic activity. Initially, within-city movement and transmission were very strongly correlated in the 5 provinces most affected by the epidemic and Beijing. However, that correlation is no longer apparent even though within-city movement has started to increase. A similar analysis for Hong Kong shows that intermediate levels of local activity can be maintained while avoiding a large outbreak. These results do not preclude future epidemics in China, nor do they allow us to estimate the maximum proportion of previous within-city activity that will be recovered in the medium term. However, they do suggest that after very intense social distancing which resulted in containment, China has successfully exited their stringent social distancing policy to some degree. Globally, China is at a more advanced stage of the pandemic. Policies implemented to reduce the spread of CO

Report

Ferguson N, Laydon D, Nedjati Gilani G, Imai N, Ainslie K, Baguelin M, Bhatia S, Boonyasiri A, Cucunuba Perez Z, Cuomo-Dannenburg G, Dighe A, Dorigatti I, Fu H, Gaythorpe K, Green W, Hamlet A, Hinsley W, Okell L, van Elsland S, Thompson H, Verity R, Volz E, Wang H, Wang Y, Walker P, Walters C, Winskill P, Whittaker C, Donnelly C, Riley S, Ghani Aet al., 2020, Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand

The global impact of COVID-19 has been profound, and the public health threat it represents is the most serious seen in a respiratory virus since the 1918 H1N1 influenza pandemic. Here we present the results of epidemiological modelling which has informed policymaking in the UK and other countries in recent weeks. In the absence of a COVID-19 vaccine, we assess the potential role of a number of public health measures – so-called non-pharmaceutical interventions (NPIs) – aimed at reducing contact rates in the population and thereby reducing transmission of the virus. In the results presented here, we apply a previously published microsimulation model to two countries: the UK (Great Britain specifically) and the US. We conclude that the effectiveness of any one intervention in isolation is likely to be limited, requiring multiple interventions to be combined to have a substantial impact on transmission. Two fundamental strategies are possible: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread – reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. Each policy has major challenges. We find that that optimal mitigation policies (combining home isolation of suspect cases, home quarantine of those living in the same household as suspect cases, and social distancing of the elderly and others at most risk of severe disease) might reduce peak healthcare demand by 2/3 and deaths by half. However, the resulting mitigated epidemic would still likely result in hundreds of thousands of deaths and health systems (most notably intensive care units) being overwhelmed many times over. For countries able to achieve it, this leaves suppression as the preferred policy option. We show that in the UK and US context, suppression will minimally requi

Report

Gaythorpe K, Imai N, Cuomo-Dannenburg G, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunuba Perez Z, Dighe A, Dorigatti I, Fitzjohn R, Fu H, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati Gilani G, Okell L, Riley S, Thompson H, van Elsland S, Volz E, Wang H, Wang Y, Whittaker C, Xi X, Donnelly C, Ghani A, Ferguson Net al., 2020, Report 8: Symptom progression of COVID-19

The COVID-19 epidemic was declared a Public Health Emergency of International Concern (PHEIC) by WHO on 30th January 2020 [1]. As of 8 March 2020, over 107,000 cases had been reported. Here, we use published and preprint studies of clinical characteristics of cases in mainland China as well as case studies of individuals from Hong Kong, Japan, Singapore and South Korea to examine the proportional occurrence of symptoms and the progression of symptoms through time.We find that in mainland China, where specific symptoms or disease presentation are reported, pneumonia is the most frequently mentioned, see figure 1. We found a more varied spectrum of severity in cases outside mainland China. In Hong Kong, Japan, Singapore and South Korea, fever was the most frequently reported symptom. In this latter group, presentation with pneumonia is not reported as frequently although it is more common in individuals over 60 years old. The average time from reported onset of first symptoms to the occurrence of specific symptoms or disease presentation, such as pneumonia or the use of mechanical ventilation, varied substantially. The average time to presentation with pneumonia is 5.88 days, and may be linked to testing at hospitalisation; fever is often reported at onset (where the mean time to develop fever is 0.77 days).

Report

Thompson H, Imai N, Dighe A, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunuba Perez Z, Cuomo-Dannenburg G, Dorigatti I, Fitzjohn R, Fu H, Gaythorpe K, Ghani A, Green W, Hamlet A, Hinsley W, Laydon D, Nedjati Gilani G, Okell L, Riley S, van Elsland S, Volz E, Wang H, Yuanrong W, Whittaker C, Xi X, Donnelly C, Ferguson Net al., 2020, Report 7: Estimating infection prevalence in Wuhan City from repatriation flights

Since the end of January 2020, in response to the growing COVID-19 epidemic, 55 countries have repatriated over 8000 citizens from Wuhan City, China. In addition to quarantine measures for returning citizens, many countries implemented PCR screening to test for infection regardless of symptoms. These flights therefore give estimates of infection prevalence in Wuhan over time. Between 30th January and 1st February (close to the peak of the epidemic in Wuhan), infection prevalence was 0.87% (95% CI: 0.32% - 1.89%). As countries now start to repatriate citizens from Iran and northern Italy, information from repatriated citizens could help inform the level of response necessary to help control the outbreaks unfolding in newly affected areas.

Report

Bhatia S, Imai N, Cuomo-Dannenburg G, Baguelin M, Boonyasiri A, Cori A, Cucunuba Perez Z, Dorigatti I, Fitzjohn R, Fu H, Gaythorpe K, Ghani A, Hamlet A, Hinsley W, Laydon D, Nedjati Gilani G, Thompson H, Okell L, Riley S, van Elsland S, Volz E, Wang H, Wang Y, Whittaker C, Xi X, Donnelly C, Ferguson Net al., 2020, Report 6: Relative sensitivity of international surveillance, Report 6: Relative sensitivity of international surveillance

Since the start of the COVID-19 epidemic in late 2019, there are now 29 affected countries with over 1000 confirmed cases outside of mainland China. In previous reports, we estimated the likely epidemic size in Wuhan City based on air traffic volumes and the number of detected cases internationally. Here we analysed COVID-19 cases exported from mainland China to different regions and countries, comparing the country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different countries. Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that about two thirds of COVID-19 cases exported from mainland China have remained undetected worldwide, potentially resulting in multiple chains of as yet undetected human-to-human transmission outside mainland China.

Report

Volz E, Baguelin M, Bhatia S, Boonyasiri A, Cori A, Cucunuba Perez Z, Cuomo-Dannenburg G, Donnelly C, Dorigatti I, Fitzjohn R, Fu H, Gaythorpe K, Ghani A, Hamlet A, Hinsley W, Imai N, Laydon D, Nedjati Gilani G, Okell L, Riley S, van Elsland S, Wang H, Wang Y, Xi X, Ferguson Net al., 2020, Report 5: Phylogenetic analysis of SARS-CoV-2

Genetic diversity of SARS-CoV-2 (formerly 2019-nCoV), the virus which causes COVID-19, provides information about epidemic origins and the rate of epidemic growth. By analysing 53 SARS-CoV-2 whole genome sequences collected up to February 3, 2020, we find a strong association between the time of sample collection and accumulation of genetic diversity. Bayesian and maximum likelihood phylogenetic methods indicate that the virus was introduced into the human population in early December and has an epidemic doubling time of approximately seven days. Phylodynamic modelling provides an estimate of epidemic size through time. Precise estimates of epidemic size are not possible with current genetic data, but our analyses indicate evidence of substantial heterogeneity in the number of secondary infections caused by each case, as indicated by a high level of over-dispersion in the reproduction number. Larger numbers of more systematically sampled sequences – particularly from across China – will allow phylogenetic estimates of epidemic size and growth rate to be substantially refined.

Report

Dorigatti I, Okell L, Cori A, Imai N, Baguelin M, Bhatia S, Boonyasiri A, Cucunuba Perez Z, Cuomo-Dannenburg G, Fitzjohn R, Fu H, Gaythorpe K, Hamlet A, Hinsley W, Hong N, Kwun M, Laydon D, Nedjati Gilani G, Riley S, van Elsland S, Volz E, Wang H, Walters C, Xi X, Donnelly C, Ghani A, Ferguson Net al., 2020, Report 4: Severity of 2019-novel coronavirus (nCoV)

We present case fatality ratio (CFR) estimates for three strata of 2019-nCoV infections. For cases detected in Hubei, we estimate the CFR to be 18% (95% credible interval: 11%-81%). For cases detected in travellers outside mainland China, we obtain central estimates of the CFR in the range 1.2-5.6% depending on the statistical methods, with substantial uncertainty around these central values. Using estimates of underlying infection prevalence in Wuhan at the end of January derived from testing of passengers on repatriation flights to Japan and Germany, we adjusted the estimates of CFR from either the early epidemic in Hubei Province, or from cases reported outside mainland China, to obtain estimates of the overall CFR in all infections (asymptomatic or symptomatic) of approximately 1% (95% confidence interval 0.5%-4%). It is important to note that the differences in these estimates does not reflect underlying differences in disease severity between countries. CFRs seen in individual countries will vary depending on the sensitivity of different surveillance systems to detect cases of differing levels of severity and the clinical care offered to severely ill cases. All CFR estimates should be viewed cautiously at the current time as the sensitivity of surveillance of both deaths and cases in mainland China is unclear. Furthermore, all estimates rely on limited data on the typical time intervals from symptom onset to death or recovery which influences the CFR estimates.

Report

Carrera J-P, Cucunubá ZM, Neira K, Lambert B, Pittí Y, Jackman C, Liscano J, Garzón JL, Beltran D, Collado-Mariscal L, Saenz L, Sosa N, Rodriguez-Guzman LD, González P, Lezcano AG, Pereyra-Elías R, Valderrama A, Weaver SC, Vittor AY, Armién B, Pascale J-M, Donnelly CAet al., 2020, Endemic and epidemic human alphavirus infections in Eastern Panama; An Analysis of Population-based Cross-Sectional Surveys

<jats:title>Abstract</jats:title><jats:sec><jats:title>Background</jats:title><jats:p>Madariaga virus (MADV), has recently been associated with severe human disease in Panama, where the closely related Venezuelan equine encephalitis virus (VEEV) also circulates. In June, 2017, a fatal MADV infection was confirmed in a community of Darien province.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>We conducted a cross-sectional outbreak investigation with human and mosquito collections in July 2017, where sera were tested for alphavirus antibodies and viral RNA. Additionally, by applying a catalytic, force-of-infection statistical model to two serosurveys from Darien province in 2012 and 2017, we investigated whether endemic or epidemic alphavirus transmission occurred historically.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>In 2017, MADV and VEEV IgM seroprevalence was 1.6% and 4.4%, respectively; IgG antibody prevalences were MADV: 13.2%; VEEV: 16.8%; Una virus (UNAV): 16.0%; and Mayaro virus (MAYV): 1.1%. Active viral circulation was not detected. Evidence of MADV and UNAV infection was found near households — raising questions about its vectors and enzootic transmission cycles. Insomnia was associated with MADV and VEEV infection, depression symptoms were associated with MADV, and dizziness with VEEV and UNAV. Force-of-infection analyses suggest endemic alphavirus transmission historically, with recent increased human exposure to MADV and VEEV in some regions.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The lack of additional neurological cases suggest that severe MADV and VEEV infections occur only rarely. Our results indicate that, over the past five decades, alphavirus infections have occurred at low levels in eastern Panama, but that MADV

Working paper

Bhatia S, Imai N, Cuomo-Dannenburg G, Baguelin M, Boonyasiri A, Cori A, Cucunubá Z, Dorigatti I, FitzJohn R, Fu H, Gaythorpe K, Ghani A, Hamlet A, Hinsley W, Laydon D, Nedjati-Gilani G, Okell L, Riley S, Thompson H, van Elsland S, Volz E, Wang H, Wang Y, Whittaker C, Xi X, Donnelly CA, Ferguson NMet al., 2020, Estimating the number of undetected COVID-19 cases among travellers from mainland China., Wellcome open research, Vol: 5, Pages: 143-143, ISSN: 2398-502X

Background: As of August 2021, every region of the world has been affected by the COVID-19 pandemic, with more than 196,000,000 cases worldwide.Methods: We analysed COVID-19 cases among travellers from mainland China to different regions and countries, comparing the region- and country-specific rates of detected and confirmed cases per flight volume to estimate the relative sensitivity of surveillance in different regions and countries.Results: Although travel restrictions from Wuhan City and other cities across China may have reduced the absolute number of travellers to and from China, we estimated that up to 70% (95% CI: 54% - 80%) of imported cases could remain undetected relative to the sensitivity of surveillance in Singapore. The percentage of undetected imported cases rises to 75% (95% CI 66% - 82%) when comparing to the surveillance sensitivity in multiple countries.Conclusions: Our analysis shows that a large number of COVID-19 cases remain undetected across the world. These undetected cases potentially resulted in multiple chains of human-to-human transmission outside mainland China.

Journal article

Kim JYH, Ledien J, Rodriguez-Monguí E, Dobson A, Basáñez M-G, Cucunubá Zet al., 2019, Global Trends of Seroprevalence and Universal Screening Policy for Chagas Disease in Donors: a systematic review and meta-analysis, medRxiv

<h4>Background</h4> Screening for Trypanosoma cruzi among blood and organ donors is essential to reduce Chagas disease transmission. The World Health Organization (WHO) has prioritised curtailing transmission in blood banks (BBs) and transplantation centres (TCs) by 50% by 2025 and 100% by 2030. This study aims to update the situation on T. cruzi screening strategies in BBs and TCs to evaluate the evolution of seroprevalence and the achievement of screening milestones globally. <h4>Methods</h4> We used published articles and government reports on seroprevalence data and screening policies in BBs and TCs across the world. We conducted meta-analyses of T. cruzi seroprevalence estimates by who region, endemicity status, and country, and used meta-regression to identify the covariates influencing the estimates. Publication bias and sensitivity analyses were also conducted. <h4>Results</h4> Based on 99 studies and reports and found a global pattern of increased universal screening policies (USPs) in BBs from 1990 to 2018. We found information for 50 countries, of which 44 (88%) have implemented USPs and 21 (42%) achieved 100% coverage by 2015. Out of the 21 Chagas-disease endemic countries, 20 are in advanced USPS stages, and 18 achieved 100% coverage by 2015. Latin America (LA) was the first region to start USPS since the 1990s and 19 countries are in advanced stages of implementation and by 2015 there is evidence of 100% coverage in 15 LA countries. In the Caribbean Region, USPs are still in early implementation stages and by 2015 only five out of 24 countries have achieved 100% coverage. Outside Latin America and the Caribbean, there are USPs only in the USA, which initiated in 2007 and with 100% coverage in 2016. In Europe, there are no USPs, but some countries have implemented selective screening of at-risk donors in the UK, Spain, France and Switzerland. Whereas Sweden and Italy have implemented a deferral system. For TCs, nation

Journal article

Castro MC, Baeza A, Codeco CT, Cucunuba ZM, Dal'Asta AP, De Leo GA, Dobson AP, Carrasco-Escobar G, Lana RM, Lowe R, Vieira Monteiro AM, Pascual M, Santos-Vega Met al., 2019, Development, environmental degradation, and disease spread in the Brazilian Amazon, PLoS Biology, Vol: 17, Pages: 1-8, ISSN: 1544-9173

The Amazon is Brazil’s greatest natural resource and invaluable to the rest of the world as a buffer against climate change. The recent election of Brazil’s president brought disputes over development plans for the region back into the spotlight. Historically, the development model for the Amazon has focused on exploitation of natural resources, resulting in environmental degradation, particularly deforestation. Although considerable attention has focused on the long-term global cost of “losing the Amazon,” too little attention has focused on the emergence and reemergence of vector-borne diseases that directly impact the local population, with spillover effects to other neighboring areas. We discuss the impact of Amazon development models on human health, with a focus on vector-borne disease risk. We outline policy actions that could mitigate these negative impacts while creating opportunities for environmentally sensitive economic activities.

Journal article

Collaborating Group on Chagas Disease Modelling, 2019, Insights from quantitative and mathematical modelling on the proposed WHO 2030 goals for Chagas disease, Gates Open Research, ISSN: 2572-4754

Chagas disease (CD) persists as one of the neglected tropical diseases (NTDs) with a particularly large impact in the Americas. The World Health Organization (WHO) recently proposed goals for CD elimination as a public health problem to be reached by 2030 by means of achieving intradomiciliary transmission interruption (IDTI), blood transfusion and transplant transmission interruption, diagnostic and treatment scaling-up and prevention and control of congenital transmission. The NTD Modelling Consortium has developed mathematical models to study Trypanosoma cruzi transmission dynamics and the potential impact of control measures. Modelling insights have shown that IDTI is feasible in areas with sustained vector control programmes and no presence of native triatomine vector populations. However, IDTI in areas with native vectors it is not feasible in a sustainable manner. Combining vector control with trypanocidal treatment can reduce the timeframes necessary to reach operational thresholds for IDTI (<2% seroprevalence in children aged <5 years), but the most informative age groups for serological monitoring are yet to be identified. Measuring progress towards the 2030 goals will require availability of vector surveillance and seroprevalence data at a fine scale, and a more active surveillance system, as well as a better understanding of the risks of vector re-colonization and disease resurgence after vector control cessation. Also, achieving scaling-up in terms of access to treatment to the expected levels (75%) will require a substantial increase in screening asymptomatic populations, which is anticipated to become very costly as CD prevalence decreases. Further modelling work includes refining and extending mathematical models (including transmission dynamics and statistical frameworks) to predict transmission at a sub-national scale, and developing quantitative tools to inform IDTI certification, post-certification and re-certification protocols. Potential

Journal article

Li X, Mukandavire C, Cucunubá Z, Abbas K, Clapham H, Jit M, Johnson H, Papadopoulos T, Vynnycky E, Brisson M, Carter E, Clark A, de Villiers M, Eilertson K, Ferrari M, Gamkrelidze I, Gaythorpe K, Grassly N, Hallett T, Jackson M, Jean K, Karachaliou A, Klepac P, Lessler J, Li X, Moore S, Nayagam S, Nguyen DM, Razavi H, Razavi-Shearer D, Resch S, Sanderson C, Sweet S, Sy S, Tam Y, Tanvir H, Tran QM, Trotter C, Truelove S, van Zandvoort K, Verguet S, Walker N, Winter A, Ferguson N, Garske T, Vaccine Impact Modelling Consortiumet al., 2019, Estimating the health impact of vaccination against 10 pathogens in 98 low and middle income countries from 2000 to 2030, Publisher: medRxiv

Background The last two decades have seen substantial expansion of childhood vaccination programmes in low and middle income countries (LMICs). Here we quantify the health impact of these programmes by estimating the deaths and disability-adjusted life years (DALYs) averted by vaccination with ten antigens in 98 LMICs between 2000 and 2030. Methods Independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B (HepB), Haemophilus influenzae type b (Hib), human papillomavirus (HPV), Japanese encephalitis (JE), measles, Neisseria meningitidis serogroup A (MenA), Streptococcus pneumoniae, rotavirus, rubella, yellow fever. Using standardized demographic data and vaccine coverage estimates for routine and supplementary immunization activities, the impact of vaccination programmes on deaths and DALYs was determined by comparing model estimates from the no vaccination counterfactual scenario with those from a default coverage scenario. We present results in two forms: deaths/DALYs averted in a particular calendar year, and in a particular annual birth cohort. Findings We estimate that vaccination will have averted 70 (2.5-97.5% quantile range 54-80) million deaths between 2000 and 2030 across the 98 countries and ten pathogens considered, 35 (30-40) million of these between 2000-2018. From 2000-2018, this represents a 41% (36-44%) reduction in deaths due to the ten pathogens relative to the no vaccination counterfactual. Most (95% (93-99%)) of this impact is in under-five age mortality, notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 121 (102-136) million deaths will be averted by vaccination, of which 58 (31-82) and 38 (10-81) million are due to measles and Hepatitis B vaccination, respectively. We estimate that recent increases in vaccine coverage and introductions of additional vaccines will result in a 72% (64-75%) reductio

Working paper

Carlos Villar J, Mauricio Herrera V, Perez Carreno JG, Vaquiro Herrera E, Castellanos Dominguez YZ, Marcell Vasquez S, Milena Cucunuba Z, Graciela Prado N, Hernandez Yet al., 2019, Nifurtimox versus benznidazole or placebo for asymptomatic Trypanosoma cruzi infection (Equivalence of Usual Interventions for Trypanosomiasis - EQUITY): study protocol for a randomised controlled trial (vol 20, 431, 2019), TRIALS, Vol: 20

Journal article

Villar JC, Herrera VM, Pérez Carreño JG, Váquiro Herrera E, Castellanos Domínguez YZ, Vásquez SM, Cucunubá ZM, Prado NG, Hernández Yet al., 2019, Nifurtimox versus benznidazole or placebo for asymptomatic Trypanosoma cruzi infection (Equivalence of Usual Interventions for Trypanosomiasis - EQUITY): study protocol for a randomised controlled trial, Trials, Vol: 20, Pages: 431-431, ISSN: 1745-6215

Either benznidazole (BZN) or nifurtimox (NFX) is recommended as equivalent to treat Trypanosoma cruzi infection. Nonetheless, supportive data from randomised trials is limited to individuals treated with BZN in southern cone countries of Latin America.

Journal article

Rodriguez-Mongui E, Cantillo-Barraza O, Prieto F, Cucunuba Perez Zet al., 2019, Heterogeneity of Trypanosoma cruzi infection rates in vectors and animal reservoirs in Colombia: A systematic review and meta-analysis, Parasites and Vectors, Vol: 12, ISSN: 1756-3305

BackgroundThe heterogeneity of Trypanosoma cruzi infection rates among triatomines insects and animal reservoirs has been studied in independent studies, but little information has been systematised to allow pooled and comparative estimates. Unravelling the main patterns of this heterogeneity could contribute to a further understanding of T. cruzi transmission in Colombia.MethodsA systematic search was conducted in PubMed, Medline, LILACS, Embase, Web of Knowledge, Google Scholar and secondary sources with no filters of language or time and until April 2018. Based on selection criteria, all relevant studies reporting T. cruzi infection rates in reservoirs or triatomines were chosen. For pooled analyses, a random effects model for binomial distribution was used. Heterogeneity among studies is reported as I2. Subgroup analyses included: taxonomic classification, ecotope and diagnostic methods. Publication bias and sensitivity analyses were performed.ResultsOverall, 39 studies reporting infection rates in Colombia were found (22 for potential reservoirs and 28 for triatomine insects) for a total sample of 22,838 potential animals and 11,307 triatomines evaluated for T. cruzi infection. We have found evidence of 38/71 different animal species as potential T. cruzi reservoirs and 14/18 species as triatomine vectors for T. cruzi. Among animals, the species with the highest pooled prevalence were opossum (Didelphis marsupialis) with 48.0% (95% CI: 26–71%; I2 = 88%, τ2 = 0.07, P < 0.01) and domestic dog (Canis lupus familiaris) with 22.0% (95% CI: 4–48%; I2 = 96%, τ2 = 0.01, P < 0.01). Among triatomines, the highest prevalence was found for Triatoma maculata in the peridomestic ecotope (68.0%, 95% CI: 62–74%; I2 = 0%, τ2 = 0, P < 0.0001), followed by Rhodnius prolixus (62.0%, 95% CI: 38–84%; I2 =&th

Journal article

Routledge I, Chevéz JER, Cucunubá ZM, Rodriguez MG, Guinovart C, Gustafson KB, Schneider K, Walker PGT, Ghani AC, Bhatt Set al., 2018, Estimating spatiotemporally varying malaria reproduction numbers in a near elimination setting., Nat Commun, Vol: 9

In 2016 the World Health Organization identified 21 countries that could eliminate malaria by 2020. Monitoring progress towards this goal requires tracking ongoing transmission. Here we develop methods that estimate individual reproduction numbers and their variation through time and space. Individual reproduction numbers, Rc, describe the state of transmission at a point in time and differ from mean reproduction numbers, which are averages of the number of people infected by a typical case. We assess elimination progress in El Salvador using data for confirmed cases of malaria from 2010 to 2016. Our results demonstrate that whilst the average number of secondary malaria cases was below one (0.61, 95% CI 0.55-0.65), individual reproduction numbers often exceeded one. We estimate a decline in Rc between 2010 and 2016. However we also show that if importation is maintained at the same rate, the country may not achieve malaria elimination by 2020.

Journal article

Cucunuba Perez Z, Nouvellet P, Peterson J, Bartsch S, Lee B, Dobson A, Basanez MGet al., 2018, Complementary paths to chagas disease elimination: the impact of combining vector control with aetiological treatment, Clinical Infectious Diseases, Vol: 66, Pages: S293-S300, ISSN: 1058-4838

Background:The World Health Organization’s 2020 goals for Chagas disease are (1) interrupting vector-borne intradomiciliary transmission and (2) having all infected people under care in endemic countries. Insecticide spraying has proved efficacious for reaching the first goal, but active transmission remains in several regions. For the second, treatment has mostly been restricted to recently infected patients, who comprise only a small proportion of all infected individuals.Methods:We extended our previous dynamic transmission model to simulate a domestic Chagas disease transmission cycle and examined the effects of both vector control and etiological treatment on achieving the operational criterion proposed by the Pan American Health Organization for intradomiciliary, vectorial transmission interruption (ie, <2% seroprevalence in children <5 years of age).Results:Depending on endemicity, an antivectorial intervention that decreases vector density by 90% annually would achieve the transmission interruption criterion in 2–3 years (low endemicity) to >30 years (high endemicity). When this strategy is combined with annual etiological treatment in 10% of the infected human population, the seroprevalence criterion would be achieved, respectively, in 1 and 11 years.Conclusions:Combining highly effective vector control with etiological (trypanocidal) treatment in humans would substantially reduce time to transmission interruption as well as infection incidence and prevalence. However, the success of vector control may depend on prevailing vector species. It will be crucial to improve the coverage of screening programs, the performance of diagnostic tests, the proportion of people treated, and the efficacy of trypanocidal drugs. While screening and access can be incremented as part of strengthening the health systems response, improving diagnostics performance and drug efficacy will require further research.

Journal article

Imai N, Jeffrey B, Cucunuba Z, Mercado M, Prieto F, Ospina M, Ferguson N, Dorigatti Iet al., 2018, SPATIOTEMPORAL HETEROGENEITY OF DENGUE TRANSMISSION INTENSITY IN COLOMBIA, 67th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTHM), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 287-287, ISSN: 0002-9637

Conference paper

Charniga K, Cucunuba Z, Mercado M, Prieto F, Ospina M, Ferguson N, Nouvellet P, Donnelly Cet al., 2018, SPATIAL AND TEMPORAL SPREAD OF ZIKA AND CHIKUNGUNYA VIRUSES IN COLOMBIA, A GRAVITY-MODEL BASED APPROACH, 67th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTHM), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 305-305, ISSN: 0002-9637

Conference paper

Halder J, Prociuk D, Nouvellet P, Basanez M-G, Cucunuba Zet al., 2018, DECREASING THE IMPACT OF CHAGAS DISEASE THROUGH MODELLING: THE DICTUM FRAMEWORK FOR RETRIEVING, COLLATING, AND ANALYSING SEROSURVEY DATA FOR CHAGAS DISEASE ACROSS LATIN AMERICA, 67th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTHM), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 625-625, ISSN: 0002-9637

Conference paper

Nouvellet P, Cucunuba Z, Rodriguez-Barraquer I, Vanhomwegen J, Montoya M-C, Trujillo Correa A, Camacho Burgos E, Estupinan M, Lozano A, Gelves M, Herrera M, Manuguerra J-C, Basanez M-G, Donnely C, Osorio J, Villar L, Ferguson Net al., 2018, CHARACTERIZATION OF POPULATION EXPOSURE (SEROPREVALENCE) TO ARBOVIRUSES AFTER RECENT OUTBREAKS IN COLOMBIA: DENGUE, CHIKUNGUNYA AND ZIKA, 67th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTHM), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 296-296, ISSN: 0002-9637

Conference paper

Cucunuba Z, Nouvellet P, Okuwoga O, Conteh L, Basanez M-Get al., 2017, PROGRESSION AND MORTALITY RATES FOR MODELLING THE BURDEN OF CHAGAS DISEASE, 65th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 206-207, ISSN: 0002-9637

Conference paper

Cucunuba ZM, Sicuri E, Diaz D, Basanez M-G, Nouvellet P, Conteh Let al., 2017, ESTIMATING THE COSTS AND COST-EFFECTIVENESS OF EARLY DIAGNOSIS AND TREATMENT OF CHAGAS DISEASE IN COLOMBIA, 65th Annual Meeting of the American-Society-of-Tropical-Medicine-and-Hygiene (ASTMH), Publisher: AMER SOC TROP MED & HYGIENE, Pages: 364-364, ISSN: 0002-9637

Conference paper

Criollo I, Flórez AC, Morales PG, Herazo RA, Hernández DC, León CM, Camargo MM, Alfonso MM, Pachón E, Fonseca BP, Parra ML, Pavia PX, Quiróz FR, Ríos LC, Roa NL, Torres F, Rivero LMUet al., 2017, First Colombian consensus on congenital Chagas and clinical approach for women of child-bearing age diagnosed with Chagas, Infectio, Vol: 21, Pages: 255-266, ISSN: 0123-9392

Congenital transmission of Chagas disease has not been extensively studied in Colombia, and there are no standardized processes in the health system regarding the specific diagnosis, treatment and follow-up of this disease. To generate recommendations on congenital Chagas disease and Chagas in women of childbearing age in Colombia, a consensus of experts was developed. An extensive literature search through the Medline database was carried out using the MeSH terms: «Chagas disease/congenital», «prevention and control», «diagnosis», «therapeutics» and «pregnancy». Appropriate abstracts were selected and the full texts were analyzed. The relevant information was synthesized, classified, and organized into tables and figures and was presented to a panel of experts, which was composed of 30 professionals from various fields. Based on the Delphi methodology, three rounds of consultation were conducted. The first and second rounds were based on electronic questionnaires that measured the level of consensus of each question among the participants. The third round was based on a face-to-face discussion focusing on those questions without consensus in the previous consultations. The evidence was adapted to national circumstances on a case-by-case basis, and the content the final document was approved. These recommendations are proposed for use in routine medical practice by health professionals in Colombia.

Journal article

Olivera MJ, Cucunuba ZM, Valencia-Hernandez CA, Herazo R, Agreda-Rudenko D, Florez C, Duque S, Nicholls RSet al., 2017, Risk factors for treatment interruption and severe adverse effects to benznidazole in adult patients with Chagas disease, PLOS ONE, Vol: 12, Pages: 1-13, ISSN: 1932-6203

BackgroundEtiological treatment of Chagas disease in chronic asymptomatic patients is still in debate and the adverse effects of traditional drugs are one of the main concerns in clinical practice. This study evaluated retrospectively the safety profile of benznidazole (BZN) and identified predictive factors for definite treatment interruption and development of severe reactions in adult patients treated with BZN in Colombia.MethodsRetrospective follow-up study conducted by review of medical records of adults with chronic Chagas disease treated with BZN in Colombia. A parametric survival analysis based on a generalized gamma distribution was used for assessing risk factors for treatment interruption. A multinomial logistic regression model was used to estimate the probability of severe adverse drug reactions (ADRs). Statistical associations were expressed as time ratios (TR) and adjusted odds ratios (aOR) respectively.ResultsIn total 224 adults patients treated with BZN were included; 172 (76.8%) completed the standard therapy (60 days of treatment), 205 (91.5%) presented ADRs and 52 cases (23.2%) required treatment interruption. The predominant symptoms were: rash (37.9%), itching (33.7%), epigastric pain (26.4%), abdominal bloating (24.2%) and nausea (22.1%). ADRs were mild (57.4%), moderate (35.5%) and severe (7.3%). Time to treatment interruption was significantly shorter when using doses of BZN ≥ 6 mg/kg/day (TR 0.55; 95% CI 0.39–0.76), presenting severe ADRs (TR 0.12; 95% CI: 0.07–0.19) and eosinophilia (TR 0.68; 95% CI: 0.49–0.94). Female sex (aOR 3.98; 95% CI 1.56–10.16), dose of BZN ≥ 6 mg/kg/day (aOR 1.41; 95% CI 1.17–1.70) and presence of > 3 ADRs (aOR 6.47; 95% CI 1.24–34.34) were considered as risk factors for developing severe ADRs.ConclusionsDose, severity of ADRs, eosinophilia and female sex were the main predictors for treatment interruption or severe ADRs. The potential implications of these findings are

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00886503&limit=30&person=true&page=3&respub-action=search.html