Shabala Selimin the lab

MRes in Plastic Electronic Materials: We are still accepting applications from home and EU students for October 2020 entry!

Autumn term 2020-21

Courses will begin on schedule in Autumn and we look forward to seeing new and returning students in person, if travel and visa arrangements allow. Teaching will be a combination of on-campus (in-person) and remote learning (online). This ‘multi-mode’ offering may be subject to change. We will do our best to provide increased on-campus teaching and research activities as we progress throughout the year.

To ensure each programme of study can be delivered safely, we'll be making some changes to our courses for 2020-21. Read about the changes to our undergraduate and postgraduate taught courses, and to MRes and PhD courses.

Find out more about multi-mode delivery, the learning experience and the steps we’ll be taking to keep students safe on campus on our COVID-19 pages for current students and offer holders.


Contact us

If you have any questions please email the MRes programme coordinator, Lisa O'Donnell.

MRes in Plastic Electronic Materials

MRes in Plastic Electronic Materials

Coronavirus (COVID-19) and your application

Applications for this course are still open.

The start dates of our courses have not changed as a result of COVID-19 and are scheduled to start as advertised.

We remain committed to delivering the highest quality education, so you can be assured that – whether the course starts on campus, online or through blended learning – we have the technology, the expertise and committed staff who are ready to offer you a first-class educational experience that will inspire you. You can read more about this on our website.

Find more about student applications on our COVID-19 webpage

Overview

The 12-month, 90-ECTS, Bologna-compliant, MRes in Plastic Electronic Materials aims to provide a thorough foundation in the science and application of plastic electronic materials. The course is a full-time one year Masters in Research, consisting of a multidisciplinary research project, taught courses in the physics, chemistry and materials science of plastic electronic materials, practical training workshops, transferable skills courses, and regular group discussion sessions.

MRes students are also encouraged to attend regular research seminars given by the wider CPE community that are organised throughout the year, as well as colloquia targeting specialised areas, such as perovskite photovoltaics or bioelectronics.

The taught course runs between October and December, with examinations in February. Advanced and practical courses take place January to February.  The majority of the project work will take place after the exams, finishing in September.

Please email Lisa O'Donnell, the MRes programme co-ordinator for details of October 2020 MRes entry.

Course outline in more detail

Core lecture courses

The course begins in Term 1 (October-December) with a fixed lecture programme of core courses, in adition to advanced practical courses that will continue through the year. All core lecture modules are compulsory. The material covered in these courses is examined in February.

There are four core lecture courses in Term 1, delivered by lecturers from all departments and :

Introduction to plastic electronics and course overview

Plastic electronic along with related materials will be introduced, highlighting applications and areas of particular interest to both in academia, industry, and society. An outline of the taught components of the course will be described along with how the modules relate to each other.


Fundamentals of Organic and Inorganic Semiconductors and Optoelectronic Processes

This module will refresh the basic properties of semiconducting materials, highlighting the key similarities and differences between electronic behaviour in organic and inorganic materials. It will the cover the physics of the electronic structure of pi-conjugated materials and their neutral, excited and charged states (excitons, polarons), their optical properties (absorption, emission, gain), photophysical processes, photochemistry, charge and exciton transport. It will include an introduction to the techniques used to model the electrical and optical properties of molecular materials. Aspects of other material properties such as ferroelectricity, thermoelectricity and magnetism will also be introduced where relevant.


Materials Synthesis and Processing

This module will focus on the preparation and deposition of electroactive materials including the organic, inorganic and hybrid components used in plastic electronic devices.  Such electroactive materials will include small molecular charge transport materials, sensitising dyes used in solar cells, fluorescent and phosphorescent materials as well as electroactive polymers. The key concepts of conjugation, synthesis (e.g. by Suzuki or Yamamoto coupling, living polymerisations by McCullough route) and relevant characterisation (e.g. by spectroscopy, mass spectrometry, elemental analysis, GPC, cyclic voltametry) will underpin the organic components of the module which should enable students to select molecules for specific (opto)electronic applications and to suggest functionalisation (i.e. fluorination etc.) that will optimise their physical properties. Methods to chemically and physically deposit layers of inorganic and hybrid materials such as transparent oxides, metal sulphides and solution-processable perovskites will also be considered. The key kinetic and thermodynamic concepts underlying the control of morphology, crystallisation, phase behaviour, and processing of single and multi-component systems used in devices will also be covered.


Materials Characterisation

In conjunction with the Materials and Processing module, this part of the course will introduce materials characterisation techniques relevant to assessing the microstructure and surface/interface properties of relevant electroactive materials including microscopy, X-ray diffraction, rheology and thermal analysis (including degradation). The module will also introduce steady-state and time-resolved spectroscopic techniques suitable for interrogating structural properties, excited states, and charge carriers in electroactive materials. Knowledge of these techniques should provide students with a platform to start tackling the practical problems they will encounter during their projects.


Device Physics and Applications

This module will cover the basic principles of operation and design and molecular and hybrid light emitting devices, solar cells, photodiodes, thin film transistors, polymer lasers, gain media, lighting and displays. Emerging devices classes will also be introduced including spintronic and bioelectronics devices. The module will also provide an introduction to device fabrication (including encapsulation) and device engineering for maximum performance and lifetime. Methods to evaluate and assess device performance and bottlenecks will be covered (e.g. solar cell operating efficiency, transistor transfer curves). This understanding will provide students with approaches to diagnose and rectify problems in their device designs.

Advanced and practical courses

Selected advanced practical courses and workshops could be offered throughout the year to MRes students, which include:

 

Oraganic thin film and optoelectronic device fabrication & characterisation (Imperial College, Physics)

This week long course includes lectures and practical training. The lectures cover the theory and practical issues of thin film characteristics and device fabrication, and opto-electronic measurements. The practical training will focus on how to measure the optical properties of thin film samples correctly using a variety of techniques.


OPV device fabrication (Imperial College, Chemistry)

This three-day practical training will cover all steps in the fabrication and testing of lab-scale light-emitting diodes, photodiodes and OFETs in a clean room environment. The course includes substrate preparation, spin coating of organic layers, contact evaporation and encapsulation, followed by opto-electrical measurement.


Computational workshops

This two day workshop introduces some of the computational packages available for the simulation of molecular materials, including the elements of quantum chemistry calculations using Gaussian and Turbomole, molecular dynamics packages such as GROMACS, and packages for the visualisation and rendering of molecular structures.

Transferable skills courses

The Graduate School

Offers courses supporting the postgraduate student experience:


Journal Club

Journal Club aims to develop presentation skills, whilst encouraging scientific debate, and providing the opportunity to broaden scientific knowledge.  The cohort works together in a group to make a presentation about a seminal high impact paper, which is then followed by chaired discussion and debate.


Outreach

MRes students could be offered a taught outreach course. Students could receive both group and individual training on techniques and preparation to publicise and present scientific work to non-specialist audiences. These outreach activities are designed to instil important communication skills for students to draw upon throughout their careers. Outreach activities by students are strongly encouraged and supported; students are encouraged to participate in the Imperial Festival and other public engagement events. Find out more about the Outreach course.

Research projects

Students will be expected to select a project proposal in the first term following discussion with potential supervisors.

Example projects that have previously been offered to students are available via www.imperial.ac.uk/plastic-electronics-cdt/programme-and-activities/mres-in-plastic-electronic-materials/projects/.