Genes in Conflict: The Biology of Selfish Genetic Elements

Austin Burt and Robert Trivers
Harvard University Press [link to: http://www.hup.harvard.edu/catalog/BURGEN.html]

1. Selfish Genetic Elements
2. Autosomal Killers
3. Selfish Sex Chromosomes
4. Genomic Imprinting
5. Selfish Mitochondrial DNA
6. Gene Conversion and Homing
7. Transposable Elements
8. Female Drive
9. B Chromosomes
10. Genomic Exclusion
11. Selfish Cell Lineages
12. Summary and Future Directions
1. Selfish Genetic Elements
 Genetic Cooperation and Conflict
 Three Ways to Achieve “Drive”
 Within-Individual Kinship Conflicts
 Rates of Spread
 Effects on the Host Population
 The Study of Selfish Genetic Elements
 Design of This Book

2. Autosomal Killers
 The t Haplotype
 Discovery
 Structure of the t Haplotype
 History and Distribution
 Genetics of Drive
 Importance of Mating System and Gamete Competition
 Fate of Resistant Alleles
 Selection for Inversions
 Recessive Lethals in t-Complexes
 Enhancers and Suppressors
 t and the Major Histocompatibility Complex
 Heterozygous (+/t) Fitness Effects: Sex Antagonistic?
 Accounting for t Frequencies in Nature

Other Gamete Killers
 Segregation Distorter in Drosophila
 Spore Killers in Fungi
 Incidence of Gamete Killers
Maternal Effect Killers

Medea in Flour Beetles

HSR, scat, and Om in Mice

The Evolution of Maternal Effect Killers

Gestational Drive?

Gametophyte Factors in Plants

3. Selfish Sex Chromosomes

Sex Chromosome Drive in the Diptera

Killer X Chromosomes

Killer Y Chromosomes

Taxonomic Distribution of Killer Sex Chromosomes

Evolutionary Cycles of Sex Determination

Feminizing X (and Y) Chromosomes in Rodents

The Varying Lemming

The Wood Lemming

Other Murids

Other Conflicts: Sex Ratios and Mate Choice

4. Genomic Imprinting

Imprinting and Parental Investment in Mammals

Igf2 and *Igf2r*: oppositely imprinted, oppositely acting growth factors in mice

Growth Effects of Imprinted Genes in Mice and Humans

Evolution of the Imprinting Apparatus

The mechanisms of imprinting involve methylation, and are complex

Conflict Between Different Components of the Imprinting
Machinery
History of Conflict Reflected in the Imprinting Apparatus
Evolutionary Turnover of the Imprinting Apparatus
Intra-locus Interactions, Polar Overdominance and
Paramutation
Transmission Ratio Distortion at Imprinted Loci
Biparental Imprinting and Other Possibilities
Other Traits: Social Interactions After the Period of
Parental Investment
 Maternal Behavior in Mice
 Inbreeding and Dispersal
 Kin Recognition
 Functional Interpretation of Tissue Effects in Chimeric
 Mice
 Deceit and Selves-Deception
Imprinting and the Sex Chromosomes
Genomic Imprinting in Other Taxa
 Flowering Plants
 Other Taxa Predicted to Have Imprinting

5. Selfish Mitochondrial DNA
 Mitochondrial Genomics: A Primer
 Mitochondrial Selection Within the Individual
 “petite” Mutations in Yeast
 Within-Individual Selection and the Evolution of
 Uniparental Inheritance
 Within-Individual Selection Under Uniparental
Inheritance
DUI: Mother-to-Daughter and Father-to-Son mtDNA Inheritance in Mussels

Cytoplasmic Male Sterility
Uniparental Inheritance Implies Unisexual Selection
Disproportionate Role of mtDNA in Plant Male Sterility
Mechanisms of Mitochondrial Action and Nuclear Reaction
CMS and Restorers in Natural Populations
CMS, Masculinization, and the Evolution of Separate Sexes
Pollen Limitation, Frequency Dependence, and Local Extinction
Resource Reallocation Versus Inbreeding Avoidance
Importance of Mutational Variation
CMS and Paternal Transmission

Other Traces of Mito-Nuclear Conflict
Mitochondria and Apoptosis
Mitochondria and Germ Cell Determination
Mitochondria and RNA Editing

6. Gene Conversion and Homing
Biased Gene Conversion
Molecular Biology: Gene Conversion As a By-product of Other Processes
Effective Selection Coefficients Due to BGC in Fungi
BGC and Genome Evolution
BGC and Evolution of the Meiotic Machinery
Homing and Retro-Homing
Molecular Biology: How HEGs Home
HEGs Usually Associated with Self-Splicing Introns or Inteins
Population Biology: HEGs and Host Mating System
Evolutionary Cycle of Horizontal Transmission, Degeneration and Loss
Mating-Type Switching in Yeast Catalyzed by a Domesticated HEG
Group II Introns Home Via an RNA Intermediate
Artificial HEGs As Tools for Population Genetic Engineering
The Basic Construct
Increasing the Load
Preventing Natural Resistance and Horizontal Transmission
Population Genetic Engineering
Other Uses

7. Transposable Elements
Molecular Structure and Mechanisms
DNA transposons
LINEs and SINEs
LTR Retroelements
Population Biology and Natural Selection
Transposition Rates Low But Greater Than Excision
Rates
Natural Selection on the Host Slows the Spread of Transposable Elements
Rapid Spread of \(P \) elements in \(D. \) melanogaster
Net Reproductive Rate a Function of Transposition Rate and Effect on Host Fitness
Reducing Harm to the Host
Transposition Rate and Copy Number “Regulation”
Selection for Self-Recognition
Defective and Repressor Elements
Extinction of Active Elements in Host Species
Horizontal Transmission and Long-Term Persistence
Transposable Elements in Inbred and Outcrossed Populations
Beneficial Inserts
Rates of Fixation
Transposable Elements and Host Evolution
Transposable Elements and Chromosomal Rearrangements
Transposable Elements and Genome Size
Co-Option of Transposable Element Functions and Host Defenses
Transposable Elements As Parasites, Not Host Adaptations or Mutualists
Origins
Ancient, Chimeric, and Polyphyletic Origins
8. Female Drive

- Selfish Centromeres and Female Meiosis
- Abnormal Chromosome 10 of Maize
- Other Knobs in Maize
- Deleterious Effects of Knobs in Maize
- Knobs, Supernumerary Segments, and Neocentromeres in Other Species
- Meiosis-Specific Centromeres and Holocentric Chromosomes
- Selfish Centromeres and Meiosis I
- The Importance of Centromere Number: Robertsonian Translocations in Mammals
- Sperm-Dependent Female Drive?
- Female Drive and Karyotype Evolution
- Polar Bodies Rejoining the Germline

9. B Chromosomes

- Drive
 - Types of Drive
 - Genetics of A and B Factors Affecting B Drive
 - Transmission Rates in Well-Studied Species
 - Absence of Drive
 - Degree of Outcrossing and Drive
- Effects on the Phenotype
 - Effects on Genome Size, Cell Size, and Cell Cycle
 - Effects on the External Phenotype
 - Disappearance from Somatic Tissue
B Number and the Odd-Even Effect
Negative Effects of Bs More Pronounced Under Harsher Conditions
Is the Sex of Drive Associated with the Sex of Phenotypic Effect?
B Effects on Recombination Among the As
Pairing of A Chromosomes in Hybrids

Neutral and Beneficial Bs
Beneficial B Chromosomes
B Chromosomes in *Eyprepocnemis plorans*: A Case of Continuous Neutralization?

Structure and Content
Size
Polymorphism
Heterochromatin
Genes
Tandem Repeats

The Origin of Bs
A Factors Associated with B Presence
Genome Size
Chromosome Number
Ploidy
Shape of A Chromosomes

Bs and the Sex Ratio
Paternal Sex Ratio (PSR) in *Nasonia*
X–B Associations in Orthoptera
Has the *Drosophila* Y evolved from a B?
Other Effects of Bs on the Sex Ratio
Male Sterility in *Plantago*

10. Genomic Exclusion

Paternal Genome Loss in Males, or Parahaplodiploidy

PGL in Mites
PGL in Scale Insects
PGL in the Coffee Borer Beetle
PGL in Springtails?
Evolution of PGL
PGL and Haplodiploidy

Sciarid Chromosome System

Notable Features of the Sciarid System
An Evolutionary Hypothesis
Mechanisms
PGL in Gall Midge

Hybridogenesis or Hemiclonal Reproduction

The Topminnow *Poeciliopsis*
The Waterfrog *Rana esculenta*
The Stick Insect *Bacillus rossius-grandii*

Evolution of Hybridogenesis

Androgenesis, or Maternal Genome Loss

The Conifer *Cupressus dupreziana*
The Clam *Corbicula*
The Stick Insect *Bacillus rossius-grandii*

11. Selfish Cell Lineages

Mosaics
Somatic Cell Lineage Selection: Cancer and the Adaptive Immune System
Cell Lineage Selection in the Germline
Evolution of the Germline
Selfish Genes and Germline-Limited DNA
Chimeras
 Taxonomic Survey of Chimerism
 Somatic Chimerism and Polar Bodies

12. Summary and Future Directions
Logic of Selfish Genetic Elements
Molecular Genetics
Selfish Genes and Sex
Fate of a Selfish Gene Within a Species
Movement Between Species
Distribution Among Species
Role in Host Evolution
The Hidden World of Selfish Genetic Elements