TY - JOUR AB - Interactions between species can promote evolutionary divergence of ecological traits and social signals1,2, a process widely assumed to generate species differences in adaptive radiation3,4,5. However, an alternative view is that lineages typically interact when relatively old6, by which time selection for divergence is weak7,8 and potentially exceeded by convergent selection acting on traits mediating interspecific competition9. Few studies have tested these contrasting predictions across large radiations, or by controlling for evolutionary time. Thus the role of species interactions in driving broad-scale patterns of trait divergence is unclear10. Here we use phylogenetic estimates of divergence times to show that increased trait differences among coexisting lineages of ovenbirds (Furnariidae) are explained by their greater evolutionary age in relation to non-interacting lineages, and that—when these temporal biases are accounted for—the only significant effect of coexistence is convergence in a social signal (song). Our results conflict with the conventional view that coexistence promotes trait divergence among co-occurring organisms at macroevolutionary scales, and instead provide evidence that species interactions can drive phenotypic convergence across entire radiations, a pattern generally concealed by biases in age. AU - Tobias,JA AU - Cornwallis,CK AU - Derryberry,EP AU - Claramunt,S AU - Brumfield,RT AU - Seddon,N DO - 10.1038/nature12874 EP - 363 PY - 2014/// SN - 0028-0836 SP - 359 TI - Species coexistence and the dynamics of phenotypic evolution in adaptive radiation T2 - Nature UR - http://dx.doi.org/10.1038/nature12874 UR - http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000331477800039&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=1ba7043ffcc86c417c072aa74d649202 VL - 506 ER -