Download a PDF with the full list of Robot-Intelligence-Lab-Publications.pdf

A comprehensive list can also be found at Google Scholar, or by searching for the publications of author Kormushev, Petar.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Conference paper
    Carrera A, Karras G, Bechlioulis C, Palomeras N, Hurtos N, Kyriakopoulos K, Kormushev P, Carreras Met al., 2014,

    Improving a Learning by Demonstration framework for Intervention AUVs by means of an UVMS controller

  • Conference paper
    Jamali N, Kormushev P, Ahmadzadeh SR, Caldwell DGet al., 2014,

    Covariance Analysis as a Measure of Policy Robustness in Reinforcement Learning

  • Conference paper
    Carrera A, Palomeras N, Ribas D, Kormushev P, Carreras Met al., 2014,

    An Intervention-AUV learns how to perform an underwater valve turning

  • Conference paper
    Carrera A, Palomeras N, Hurtos N, Kormushev P, Carreras Met al., 2014,

    Learning by demonstration applied to underwater intervention

  • Conference paper
    Ahmadzadeh SR, Kormushev P, Caldwell DG, 2013,

    Autonomous robotic valve turning: A hierarchical learning approach

    , 2013 IEEE International Conference on Robotics and Automation (ICRA), Publisher: IEEE, Pages: 4629-4634, ISSN: 1050-4729

    Autonomous valve turning is an extremely challenging task for an Autonomous Underwater Vehicle (AUV). To resolve this challenge, this paper proposes a set of different computational techniques integrated in a three-layer hierarchical scheme. Each layer realizes specific subtasks to improve the persistent autonomy of the system. In the first layer, the robot acquires the motor skills of approaching and grasping the valve by kinesthetic teaching. A Reactive Fuzzy Decision Maker (RFDM) is devised in the second layer which reacts to the relative movement between the valve and the AUV, and alters the robot's movement accordingly. Apprenticeship learning method, implemented in the third layer, performs tuning of the RFDM based on expert knowledge. Although the long-term goal is to perform the valve turning task on a real AUV, as a first step the proposed approach is tested in a laboratory environment. © 2013 IEEE.

  • Conference paper
    Ahmadzadeh SR, Kormushev P, Caldwell DG, 2013,

    Visuospatial Skill Learning for Object Reconfiguration Tasks

  • Conference paper
    Kormushev P, Caldwell DG, 2013,

    Improving the Energy Efficiency of Autonomous Underwater Vehicles by Learning to Model Disturbances

  • Conference paper
    Karras GC, Bechlioulis CP, Leonetti M, Palomeras N, Kormushev P, Kyriakopoulos KJ, Caldwell DGet al., 2013,

    On-Line Identification of Autonomous Underwater Vehicles through Global Derivative-Free Optimization

  • Conference paper
    Ahmadzadeh SR, Kormushev P, Caldwell DG, 2013,

    Interactive Robot Learning of Visuospatial Skills

  • Conference paper
    Kormushev P, Caldwell DG, 2013,

    Comparative Evaluation of Reinforcement Learning with Scalar Rewards and Linear Regression with Multidimensional Feedback

  • Conference paper
    Jamali N, Kormushev P, Caldwell DG, 2013,

    Contact State Estimation using Machine Learning

  • Conference paper
    Ahmadzadeh SR, Leonetti M, Kormushev P, 2013,

    Online Direct Policy Search for Thruster Failure Recovery in Autonomous Underwater Vehicles

  • Conference paper
    Leonetti M, Ahmadzadeh SR, Kormushev P, 2013,

    On-line Learning to Recover from Thruster Failures on Autonomous Underwater Vehicles

  • Conference paper
    Kormushev P, Caldwell DG, 2013,

    Towards Improved AUV Control Through Learning of Periodic Signals

  • Conference paper
    Kormushev P, Caldwell DG, 2013,

    Reinforcement Learning with Heterogeneous Policy Representations

  • Conference paper
    Kryczka P, Hashimoto K, Takanishi A, Kormushev P, Tsagarakis N, Caldwell DGet al., 2013,

    Walking Despite the Passive Compliance: Techniques for Using Conventional Pattern Generators to Control Instrinsically Compliant Humanoid Robots

  • Conference paper
    Carrera A, Carreras M, Kormushev P, Palomeras N, Nagappa Set al., 2013,

    Towards valve turning with an AUV using Learning by Demonstration

  • Journal article
    Kormushev P, Calinon S, Caldwell DG, 2013,

    Reinforcement Learning in Robotics: Applications and Real-World Challenges

    , Robotics, Vol: 2, Pages: 122-148, ISSN: 2218-6581
  • Conference paper
    Kryczka P, Shiguematsu YM, Kormushev P, Hashimoto K, Lim H-O, Takanishi Aet al., 2013,

    Towards dynamically consistent real-time gait pattern generation for full-size humanoid robots

  • Conference paper
    Dallali H, Mosadeghzad M, Medrano-Cerda GA, Docquier N, Kormushev P, Tsagarakis N, Li Z, Caldwell Det al., 2013,

    Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach

    , Pages: 598-603

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=815&limit=20&page=3&respub-action=search.html Current Millis: 1582116220257 Current Time: Wed Feb 19 12:43:40 GMT 2020