Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Peng Y, Bloomfield K, Cernusak L, Dominques T, Prentice ICet al., 2021,

    Global climate and nutrient controls of photosynthetic capacity

    , Communications Biology, Vol: 4, ISSN: 2399-3642

    There is huge uncertainty about how global exchanges of carbon between the atmosphere and land will respond to continuing environmental change. A better representation of photosynthetic capacity is required for Earth System models to simulate carbon assimilation reliably. Here we use a global leaf-trait dataset to test whether photosynthetic capacity is quantitatively predictable from climate, based on optimality principles; and to explore how this prediction is modified by soil properties, including indices of nitrogen and phosphorus availability, measured in situ. The maximum rate of carboxylation standardized to 25 °C (Vcmax25) was found to be proportional to growing-season irradiance, and to increase—as predicted—towards both colder and drier climates. Individual species’ departures from predicted Vcmax25 covaried with area-based leaf nitrogen (Narea) but community-mean Vcmax25 was unrelated to Narea, which in turn was unrelated to the soil C:N ratio. In contrast, leaves with low area-based phosphorus (Parea) had low Vcmax25 (both between and within communities), and Parea increased with total soil P. These findings do not support the assumption, adopted in some ecosystem and Earth System models, that leaf-level photosynthetic capacity depends on soil N supply. They do, however, support a previously-noted relationship between photosynthesis and soil P supply.

  • Journal article
    Neate-Clegg MHC, Jones SE, Tobias JA, Newmark WD, Sekercioglu CHet al., 2021,

    Ecological correlates of elevational range shifts in tropical birds

    , Frontiers in Ecology and Evolution, Vol: 9, Pages: 1-16, ISSN: 2296-701X

    Globally, birds have been shown to respond to climate change by shifting their elevational distributions. This phenomenon is especially prevalent in the tropics, where elevational gradients are often hotspots of diversity and endemism. Empirical evidence has suggested that elevational range shifts are far from uniform across species, varying greatly in the direction (upslope vs. downslope) and rate of change (speed of elevational shift). However, little is known about the drivers of these variable responses to climate change, limiting our ability to accurately project changes in the future. Here, we compile empirical estimates of elevational shift rates (m/yr) for 421 bird species from eight study sites across the tropics. On average, species shifted their mean elevations upslope by 1.63 ± 0.30 m/yr, their upper limits by 1.62 m ± 0.38 m/yr, and their lower limits by 2.81 ± 0.42 m/yr. Upslope shift rates increased in smaller-bodied, less territorial species, whereas larger species were more likely to shift downslope. When considering absolute shift rates, rates were fastest for species with high dispersal ability, low foraging strata, and wide elevational ranges. Our results indicate that elevational shift rates are associated with species’ traits, particularly body size, dispersal ability, and territoriality. However, these effects vary substantially across sites, suggesting that responses of tropical montane bird communities to climate change are complex and best predicted within the local or regional context.

  • Journal article
    Tobias JA, Donald PF, Martin RW, Butchart SHM, Collar NJet al., 2021,

    Performance of a points-based scoring system for assessing species limits in birds

    , Ornithology, Vol: 138, Pages: 1-14, ISSN: 2732-4613

    Species are fundamental to biology, conservation, and environmental legislation; yet, there is often disagreement on how and where species limits should be drawn. Even sophisticated molecular methods have limitations, particularly in the context of geographically isolated lineages or inadequate sampling of loci. With extinction rates rising, methods are needed to assess species limits rapidly but robustly. Tobias et al. devised a points-based system to compare phenotypic divergence between taxa against the level of divergence in sympatric species, establishing a threshold to guide taxonomic assessments at a global scale. The method has received a mixed reception. To evaluate its performance, we identified 397 novel taxonomic splits from 328 parent taxa made by application of the criteria (in 2014‒2016) and searched for subsequent publications investigating the same taxa with molecular and/or phenotypic data. Only 71 (18%) novel splits from 60 parent taxa have since been investigated by independent studies, suggesting that publication of splits underpinned by the criteria in 2014–2016 accelerated taxonomic decisions by at least 33 years. In the evaluated cases, independent analyses explicitly or implicitly supported species status in 62 (87.3%) of 71 splits, with the level of support increasing to 97.2% when excluding subsequent studies limited only to molecular data, and reaching 100% when the points-based criteria were applied using recommended sample sizes. Despite the fact that the training set used to calibrate the criteria was heavily weighted toward passerines, splits of passerines and non-passerines received equally strong support from independent research. We conclude that the method provides a useful tool for quantifying phenotypic divergence and fast-tracking robust taxonomic decisions at a global scale.

  • Journal article
    Cator L, Wyer C, Harrington L, 2021,

    Mosquito Sexual Selection and Reproductive Control Programs

    , Trends in Parasitology, Vol: 37, Pages: 330-339, ISSN: 0169-4758

    The field of mosquito mating biology has experienced a considerable expansion in the past decade. Recent work has generated many key insights about specific aspects of mating behavior and physiology. Here, we synthesize these findings and classify swarming mosquito systems as polygynous. Male mating success is highly variable in swarms and evidence suggests that it is likely determined by both scramble competition between males and female choice. Incorporating this new understanding will improve both implementation and long-term stability of reproductive control tools.

  • Journal article
    Barneche DR, Hulatt CJ, Dossena M, Padfield D, Woodward G, Trimmer M, Yvon-Durocher Get al., 2021,

    Warming impairs trophic transfer efficiency in a long-term field experiment

    , NATURE, Vol: 592, Pages: 76-+, ISSN: 0028-0836
  • Journal article
    Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt Aet al., 2021,

    Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector <i>Anopheles gambiae</i> in West Africa

    , MALARIA JOURNAL, Vol: 20
  • Journal article
    Padfield D, O'Sullivan H, Pawar S, 2021,

    rTPC and nls.multstart: A new pipeline to fit thermal performance curves in r

    , METHODS IN ECOLOGY AND EVOLUTION, Vol: 12, Pages: 1138-1143, ISSN: 2041-210X
  • Journal article
    Koontz A, Pearse WD, Wolf P, 2021,

    Pronounced Genetic Separation Among Varieties of the<i>Primula cusickiana</i>Species Complex, a Great Basin Endemic

    <jats:title>Abstract</jats:title><jats:p>Distinguishing between unique species and populations with strong genetic structure is a common challenge in population genetics, especially in fragmented habitats where allopatric speciation may be widespread and distinct groups may be morphologically similar. Such is often the case with species complexes across sky island environments. In these scenarios, biogeography may help to explain the relations between species complex members, and RADseq methods are commonly used to compare closely related species across thousands of genetic loci. Here we use RADseq to clarify the relations between geographically distinct but morphologically similar varieties of the<jats:italic>Primula cusickiana</jats:italic>species complex, and to contextualize past findings of strong genetic structure among populations within varieties. Our genomic analyses demonstrate pronounced separation between isolated populations of this Great Basin endemic, indicating that the current varietal classification of complex members is inaccurate and emphasizing their conservation importance. We discuss how these results correspond to recent biogeographical models used to describe the distribution of other sky island taxa in western North America. Our findings also fit into a wider trend observed for alpine<jats:italic>Primula</jats:italic>species complexes, and we consider how heterostylous breeding systems may be contributing to frequent diversification via allopatric speciation in this genus.</jats:p>

  • Journal article
    Wayman JP, Sadler JP, Pugh TAM, Martin TE, Tobias JA, Matthews TJet al., 2021,

    Identifying the drivers of spatial taxonomic and functional beta-diversity of British breeding birds

    , Frontiers in Ecology and Evolution, Vol: 9, Pages: 1-16, ISSN: 2296-701X

    Spatial variation in community composition may be driven by a variety of processes, including environmental filtering and dispersal limitation. While work has been conducted on the relative importance of these processes on various taxa and at varying resolutions, tests using high-resolution empirical data across large spatial extents are sparse. Here, we use a dataset on the presence/absence of breeding bird species collected at the 10 km × 10 km scale across the whole of Britain. Pairwise spatial taxonomic and functional beta diversity, and the constituent components of each (turnover and nestedness/richness loss or gain), were calculated alongside two other measures of functional change (mean nearest taxon distance and mean pairwise distance). Predictor variables included climate and land use measures, as well as a measure of elevation, human influence, and habitat diversity. Generalized dissimilarity modeling was used to analyze the contribution of each predictor variable to variation in the different beta diversity metrics. Overall, we found that there was a moderate and unique proportion of the variance explained by geographical distance per se, which could highlight the role of dispersal limitation in community dissimilarity. Climate, land use, and human influence all also contributed to the observed patterns, but a large proportion of the explained variance in beta diversity was shared between these variables and geographical distance. However, both taxonomic nestedness and functional nestedness were uniquely predicted by a combination of land use, human influence, elevation, and climate variables, indicating a key role for environmental filtering. These findings may have important conservation implications in the face of a warming climate and future land use change.

  • Journal article
    Perkins DM, Durance I, Jackson M, Jones JI, Lauridsen RB, Layer-Dobra K, Reiss J, Thompson MSA, Woodward Get al., 2021,

    Systematic variation in food web body-size structure linked to external subsidies

    , BIOLOGY LETTERS, Vol: 17, ISSN: 1744-9561
  • Journal article
    Cael BB, Cavan EL, Britten GL, 2021,

    Reconciling the Size-Dependence of Marine Particle Sinking Speed

    , GEOPHYSICAL RESEARCH LETTERS, Vol: 48, ISSN: 0094-8276
  • Journal article
    Smith TP, Dorigatti I, Mishra S, Volz E, Walker PGT, Ragonnet-Cronin M, Tristem M, Pearse WDet al., 2021,

    Environmental drivers of SARS-CoV-2 lineage B.1.1.7 transmission intensity

    <jats:title>Abstract</jats:title><jats:p>Previous work has shown that environment affects SARS-CoV-2 transmission, but it is unclear whether emerging strains show similar responses. Here we show that, like other SARS-CoV-2 strains, lineage B.1.1.7 spread with greater transmission in colder and more densely populated parts of England. However, we also find evidence of B.1.1.7 having a transmission advantage at warmer temperatures compared to other strains. This implies that spring and summer conditions are unlikely to slow B.1.1.7’s invasion in Europe and across the Northern hemisphere - an important consideration for public health interventions.</jats:p>

  • Journal article
    Nunes MH, Jucker T, Riutta T, Svatek M, Kvasnica J, Rejzek M, Matula R, Majalap N, Ewers RM, Swinfield T, Valbuena R, Vaughn NR, Asner GP, Coomes DAet al., 2021,

    Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Nino

    , Nature Communications, Vol: 12, Pages: 1-11, ISSN: 2041-1723

    The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.

  • Journal article
    Gray REJ, Ewers RM, 2021,

    Monitoring forest phenology in a changing world

    , Forests, Vol: 12, Pages: 1-24, ISSN: 1999-4907

    Plant phenology is strongly interlinked with ecosystem processes and biodiversity. Like many other aspects of ecosystem functioning, it is affected by habitat and climate change, with both global change drivers altering the timings and frequency of phenological events. As such, there has been an increased focus in recent years to monitor phenology in different biomes. A range of approaches for monitoring phenology have been developed to increase our understanding on its role in ecosystems, ranging from the use of satellites and drones to collection traps, each with their own merits and limitations. Here, we outline the trade-offs between methods (spatial resolution, temporal resolution, cost, data processing), and discuss how their use can be optimised in different environments and for different goals. We also emphasise emerging technologies that will be the focus of monitoring in the years to follow and the challenges of monitoring phenology that still need to be addressed. We conclude that there is a need to integrate studies that incorporate multiple monitoring methods, allowing the strengths of one to compensate for the weaknesses of another, with a view to developing robust methods for upscaling phenological observations from point locations to biome and global scales and reconciling data from varied sources and environments. Such developments are needed if we are to accurately quantify the impacts of a changing world on plant phenology.

  • Journal article
    Dobreva MP, Lynton-Jenkins JG, Chaves JA, Tokita M, Bonneaud C, Abzhanov Aet al., 2021,

    Sex identification in embryos and adults of Darwin's finches

    , PLoS One, Vol: 16, Pages: 1-13, ISSN: 1932-6203

    Darwin’s finches are an iconic example of adaptive radiation and evolution under natural selection. Comparative genetic studies using embryos of Darwin’s finches have shed light on the possible evolutionary processes underlying the speciation of this clade. Molecular identification of the sex of embryonic samples is important for such studies, where this information often cannot be inferred otherwise. We tested a fast and simple chicken embryo protocol to extract DNA from Darwin’s finch embryos. In addition, we applied minor modifications to two of the previously reported PCR primer sets for CHD1, a gene used for sexing adult passerine birds. The sex of all 29 tested embryos of six species of Darwin’s finches was determined successfully by PCR, using both primer sets. Next to embryos, hatchlings and fledglings are also impossible to distinguish visually. This extends to juveniles of sexually dimorphic species which are yet to moult in adult-like plumage and beak colouration. Furthermore, four species of Darwin’s finches are monomorphic, males and females looking alike. Therefore, sex assessment in the field can be a source of error, especially with respect to juveniles and mature monomorphic birds outside of the mating season. We caught 567 juveniles and adults belonging to six species of Darwin’s finches and only 44% had unambiguous sex-specific morphology. We sexed 363 birds by PCR: individuals sexed based on marginal sex specific morphological traits; and birds which were impossible to classify in the field. PCR revealed that for birds with marginal sex specific traits, sexing in the field produced a 13% error rate. This demonstrates that PCR based sexing can improve field studies on Darwin’s finches, especially when individuals with unclear sex-related morphology are involved. The protocols used here provide an easy and reliable way to sex Darwin’s finches throughout ontogeny, from embryos to adults.

  • Journal article
    Joshi J, Stocker B, Hofhansl F, Zhou S, Brännström Å, Prentice IC, Dieckmann Uet al., 2021,

    Eco-evolutionary responses of plant communities to drought and rainfall variability

    <jats:p>&amp;lt;p&amp;gt;The future Earth is projected to experience elevated rainfall variability, with more frequent and intense droughts, as well as high-rainfall events. Increasing CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; concentrations are expected to raise terrestrial gross primary productivity (GPP), whereas water stress is expected to lower GPP. Plant responses to water stress vary strongly with timescale, and plants adapted to different environmental conditions differ in their functional responses. Here, we embed a unified optimality-based theory of stomatal conductance and biochemical acclimation of leaves we have recently developed [Joshi, J. et al. (2020) Towards a unified theory of plant photosynthesis and hydraulics. bioRxiv 2020.12.17.423132] in an eco-evolutionary vegetation-modelling framework, with the goal to investigate emergent functional diversity and associated GPP impacts under different rainfall regimes.&amp;lt;/p&amp;gt;&amp;lt;p&amp;gt;The model of photosynthesis used here simultaneously predicts the stomatal responses and biochemical acclimation of leaves to atmospheric and soil-moisture conditions. Using three hydraulic traits and two cost parameters, it successfully predicts the simultaneous declines in CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; assimilation rate, stomatal conductance, and leaf photosynthetic capacity caused by drying soil. It also correctly predicts the responses of CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; assimilation rate, stomatal conductance, leaf water potential, and leaf photosynthetic capacity to vapour pressure deficit, temperature, ambient CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;, light intensity, and elevation. Our model therefore captures the synergistic effects of atmospheric and soil drought, as well as of atmospheric CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; changes, on plant photosynthesis

  • Journal article
    Nóbrega R, Prentice IC, 2021,

    Developing a climate-driven root zone water stress function for different climates and ecosystems

    <jats:p>&amp;lt;p&amp;gt;Plant roots have less water available when soils have low moisture content and, consequently, limit their root-to-leaf water potential gradient to protect their xylem, which reduces H&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt;O and CO&amp;lt;sub&amp;gt;2&amp;lt;/sub&amp;gt; exchanges with the atmosphere. In vegetation, hydrological and land-surface models, plant responses to reduced available water in the soil have been implemented in various ways depending on data availability, type of ecosystem, and modelling assumptions. Most models use soil water stress functions &amp;amp;#8211; commonly known as beta functions &amp;amp;#8211; to reduce transpiration and carbon assimilation, by applying a factor that reflects the soil water availability for plants. These functions usually produce reasonably satisfactory results, but rely on the information on soil properties (e.g. wilting point and field capacity) that are not widely available. On a global level, soil information is mediocre, and data uncertainty is compensated by tuning parameters that rarely represent a physiological process. We propose instead the use of a beta function derived from a mass-balance approach focused on the root zone water capacity. This method quantifies the root zone water storage by calculating the accumulated water deficit based on the balance between water influxes and effluxes, and it does not require land-cover or soil information. We assessed how our approach performs compared to those other soil water stress functions. We used global datasets, including WDFE5 and PMLv2, to extract precipitation and evapotranspiration and compute water deficit. For most vegetation types and climates our approach yielded promising results. Worst results were found for some (semi-)arid sites due to the overestimation of the water deficit. We aim to deliver an approach that can be easily applied on global scales.&amp;lt;/p&a

  • Journal article
    Mengoli G, Agustí-Panareda A, Boussetta S, Harrison SP, Trotta C, Prentice ICet al., 2021,

    Application of an optimality-based model to operate at half-hourly timestep to implement plant acclimation within a land-surface modelling framework

    <jats:p>&amp;lt;p&amp;gt;Vegetation and atmosphere are linked through the perpetual exchange of water, carbon and energy. An accurate representation of the processes involved in these exchanges is crucial in forecasting Earth system states. Although vegetation has become an undisputed key component in land-surface modelling (LSMs), the current generation of models differ in terms of how key processes are formulated. Plant processes react to environmental changes on multiple time scales. Here we differentiate a fast (minutes) and a slower (acclimated &amp;amp;#8211; weeks to months) response. Some current LSMs include plant acclimation, even though they require additional parameters to represent this response, but the majority of them represent only the fast response and assume that this also applies at longer time scales. Ignoring acclimation in this way could be the cause of inconsistent future projections. Our proposition is to include plant acclimation in a LSM schema, without having to include new plant-functional-type-dependent parameters. This is possible by using an alternative model development strategy based on eco-evolutionary theory, which explicitly predicts the acclimation of photosynthetic capacities and stomatal behaviour to environmental variations. So far, this theory has been tested only at weekly to monthly timescales. Here we develop and test an approach to apply an existing optimality-based model of gross primary production (GPP), the P model, at the sub-daily timestep necessary for use in an LSM, making an explicit differentiation between the fast and slow responses of photosynthesis and stomatal conductance. We test model performance in reproducing the diurnal cycle of GPP as recorded by flux tower measurements across different biomes, including boreal and tropical forests. The extended model requires only a few meteorological inputs, and a satellite-derived product for leaf area index or green vegetation cover. It is able to

  • Journal article
    Bennett S, Girndt A, Sánchez-Tójar A, Burke T, Simons M, Schroeder Jet al., 2021,

    Evidence of paternal effects on telomere length increases in early-life

  • Journal article
    Zheng JX, Pawar S, Goodman DFM, 2021,

    Further towards unambiguous edge bundling: Investigating power-confluentdrawings for network visualization

    , IEEE Transactions on Visualization and Computer Graphics, Vol: 27, Pages: 2244-2249, ISSN: 1077-2626

    Bach et al. [1] recently presented an algorithm for constructing confluentdrawings, by leveraging power graph decomposition to generate an auxiliaryrouting graph. We identify two problems with their method and offer a singlesolution to solve both. We also classify the exact type of confluent drawingsthat the algorithm can produce as 'power-confluent', and prove that it is asubclass of the previously studied 'strict confluent' drawing. A descriptionand source code of our implementation is also provided, which additionallyincludes an improved method for power graph construction.

  • Journal article
    Rurangwa ML, Matthews TJ, Niyigaba P, Tobias JA, Whittaker RJet al., 2021,

    Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study

    , Forest Ecology and Management, Vol: 483, Pages: 1-15, ISSN: 0378-1127

    The necessity to restore rainforest habitats degraded by anthropogenic fires is widely recognized, however, research on restoration approaches has mainly centred on the recovery of forest structural complexity. There is insufficient evidence on the efficacy of restoration methods in the recovery of the faunal diversity and features linked to key ecosystem functions. We assessed the taxonomic diversity and functional trait structure of bird assemblages in undisturbed primary forest and fire-affected habitats undergoing natural regeneration, as well as areas of assisted natural regeneration, in Nyungwe National Park, Rwanda. We compiled bird occurrence data from point-count sampling, and obtained morphological traits for all species in our assemblages using measurements taken from wild birds and museum specimens. We found marked differences in species composition between primary forest habitats and regenerating forest, with similarity increasing over time since perturbation. Taxonomic diversity was higher in primary forest, and similar between the two restoration approaches. Functional diversity was lower in assisted naturally regenerated habitats, although separate analyses within dietary guilds revealed no differences across habitats. Among desired restoration outcomes, tree species diversity was the leading positive driver of avian species diversity, fern coverage exerted negative effects, while canopy cover had a positive but weak influence. Our findings underscore the importance of preventing anthropogenic fires in tropical rainforest since their impacts on ecological processes are not easily reversed, as shown by the lack of improvement in avian diversity metrics under assisted naturally regeneration in relation to natural regeneration. We stress the need to document both floral and faunal recovery in order to aid informed decision-making on restoration methods.

  • Conference paper
    Abzhanov A, 2021,

    The many faces of evolution: heterochronic developmental mechanisms for adaptive radiations

    , Annual Meeting of the Society-for-Integrative-and-Comparative-Biology (SICB), Publisher: OXFORD UNIV PRESS INC, Pages: E2-E3, ISSN: 1540-7063
  • Journal article
    Willis K, Burt A, 2021,

    Double drives and private alleles for localised population genetic control

    , PLOS GENETICS, Vol: 17, ISSN: 1553-7404
  • Journal article
    Weglarz KM, Saunders WC, Van Wagenen A, Pearse WDet al., 2021,

    Phylogenetic diversity efficiently and accurately prioritizes conservation of aquatic macroinvertebrate communities

    , ECOSPHERE, Vol: 12, ISSN: 2150-8925
  • Journal article
    Gerguri T, Fu X, Kakui Y, Khatri BS, Barrington C, Bates PA, Uhlmann Fet al., 2021,

    Comparison of loop extrusion and diffusion capture as mitotic chromosome formation pathways in fission yeast

    , NUCLEIC ACIDS RESEARCH, Vol: 49, Pages: 1294-1312, ISSN: 0305-1048
  • Journal article
    Stachewicz JD, Fountain-Jones NM, Koontz A, Woolf H, Pearse WD, Gallinat ASet al., 2021,

    Strong trait correlation and phylogenetic signal in North American ground beetle (Carabidae) morphology

    <jats:title>Abstract</jats:title><jats:p>Functional traits mediate species’ responses to and roles within their environment, and are constrained by evolutionary history. While we have a strong understanding of trait evolution for macro-taxa such as birds and mammals, our understanding of invertebrates is comparatively limited. Here we address this gap in North American beetles with a sample of ground beetles (Carabidae), leveraging a large-scale collection and digitization effort by the National Ecological Observatory Network (NEON). For 154 ground beetle species, we measured seven morphological traits, which we placed into a recently-developed effect-response framework that characterizes traits by how they predict species’ effects on their ecosystems or responses to environmental stressors. We then used cytochrome oxidase one sequences from the same specimens to generate a phylogeny and tested evolutionary tempo and mode of the traits. We found strong phylogenetic signal in, and correlations among, morphological ground beetle traits. These results indicate that, for these species, beetle body shape trait evolution is constrained, and phylogenetic inertia is a stronger driver of beetle traits than (recent) environmental responses. Strong correlations among effect and response traits suggest that future environmental drivers are likely to affect both ecological composition and functioning in these beetles.</jats:p>

  • Journal article
    Russell M, Qureshi A, Wilson C, Cator Let al., 2021,

    Size, not temperature, drives cyclopoid copepod predation of invasive mosquito larvae

    , PLoS One, Vol: 16, ISSN: 1932-6203

    During range expansion, invasive species can experience new thermal regimes. Differences between the thermal performance of local and invasive species can alter species interactions, including predator-prey interactions. The Asian tiger mosquito, Aedes albopictus, is a known vector of several viral diseases of public health importance. It has successfully invaded many regions across the globe and currently threatens to invade regions of the UK where conditions would support seasonal activity. We assessed the functional response and predation efficiency (percentage of prey consumed) of the cyclopoid copepods Macrocyclops albidus and Megacyclops viridis from South East England, UK against newly-hatched French Ae. albopictus larvae across a relevant temperature range (15, 20, and 25°C). Predator-absent controls were included in all experiments to account for background prey mortality. We found that both M. albidus and M. viridis display type II functional response curves, and that both would therefore be suitable biocontrol agents in the event of an Ae. albopictus invasion in the UK. No significant effect of temperature on the predation interaction was detected by either type of analysis. However, the predation efficiency analysis did show differences due to predator species. The results suggest that M. viridis would be a superior predator against invasive Ae. albopictus larvae due to the larger size of this copepod species, relative to M. albidus. Our work highlights the importance of size relationships in predicting interactions between invading prey and local predators.

  • Journal article
    Christensen A, Piggott M, Sebille EV, Reeuwijk MV, Pawar Set al., 2021,

    Small-scale convective turbulence constrains microbial patchiness

    <jats:title>Abstract</jats:title> <jats:p>Microbes play a primary role in aquatic ecosystems and biogeochemical cycles. Patchiness is a critical component of these activities, influencing biological productivity, nutrient cycling and dynamics across trophic levels. Incorporating spatial dynamics into microbial models is a long-standing challenge, particularly where small-scale turbulence is involved. Here, we combine a realistic simulation of turbulence with an individual-based microbial model to test the key hypothesis that the coupling of motility and turbulence drives intense microscale patchiness. We find that such patchiness is depth-structured and requires high motility: Near the fluid surface, strong convective turbulence overpowers motility, homogenising motile and non-motile microbes equally. In deeper, thermocline-like conditions, highly motile microbes are up to 1.6-fold more patch-concentrated than non-motile microbes. Our results demonstrate that the delicate balance of turbulence and motility that triggers micro-scale patchiness is not a ubiquitous consequence of motility, and that the intensity of such patchiness in real-world conditions is modest.</jats:p>

  • Software
    Barneche D, Hulatt CJ, Dossena M, Padfield D, Woodward G, Trimmer M, Yvon-Durocher Get al., 2021,

    dbarneche/nature20200508666: Accepted version of paper data and code of manuscript: Warming impairs trophic transfer efficiency in a long-term field experiment (Nature)

    Barneche DR, Hulatt CJ, Dossena M, Padfield D, Woodward G, Trimmer M, Yvon-Durocher G, Warming impairs trophic transfer efficiency in a long-term field experiment. Nature (accepted on 2021-02-11), DOI: 10.1038/s41586-021-03352-2.

  • Journal article
    Gray C, Ma A, McLaughlin O, Petit S, Woodward G, Bohan DAet al., 2021,

    Ecological plasticity governs ecosystem services in multilayer networks

    , Communications Biology, Vol: 4, Pages: 1-7, ISSN: 2399-3642

    Agriculture is under pressure to achieve sustainable development goals for biodiversity and ecosystem services. Services in agro-ecosystems are typically driven by key species, and changes in the community composition and species abundance can have multifaceted effects. Assessment of individual services overlooks co-variance between different, but related, services coupled by a common group of species. This partial view ignores how effects propagate through an ecosystem. We conduct an analysis of 374 agricultural multilayer networks of two related services of weed seed regulation and gastropod mollusc predation delivered by carabid beetles. We found that weed seed regulation increased with the herbivore predation interaction frequency, computed from the network of trophic links between carabids and weed seeds in the herbivore layer. Weed seed regulation and herbivore interaction frequencies declined as the interaction frequencies between carabids and molluscs in the carnivore layer increased. This suggests that carabids can switch to gastropod predation with community change, and that link turnover rewires the herbivore and carnivore network layers affecting seed regulation. Our study reveals that ecosystem services are governed by ecological plasticity in structurally complex, multi-layer networks. Sustainable management therefore needs to go beyond the autecological approaches to ecosystem services that predominate, particularly in agriculture.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=562&limit=30&resgrpMemberPubs=true&resgrpMemberPubs=true&page=15&respub-action=search.html Current Millis: 1739402815591 Current Time: Wed Feb 12 23:26:55 GMT 2025