BibTex format
@article{Xu:2021:10.1111/nph.17656,
author = {Xu, H and Wang, H and Prentice, IC and Harrison, S and Wright, I},
doi = {10.1111/nph.17656},
journal = {New Phytologist},
pages = {1286--1296},
title = {Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements},
url = {http://dx.doi.org/10.1111/nph.17656},
volume = {232},
year = {2021}
}
RIS format (EndNote, RefMan)
TY - JOUR
AB - Close coupling between water loss and carbon dioxide uptake requires coordination of plant hydraulics and photosynthesis. However, there is still limited information on the quantitative relationships between hydraulic and photosynthetic traits.We propose a basis for these relationships based on optimality theory, and test its predictions by analysis of measurements on 107 species from 11 sites, distributed along a nearly 3000-m elevation gradient.Hydraulic and leaf-economic traits were less plastic, and more closely associated with phylogeny, than photosynthetic traits. The two sets of traits are linked by the sapwood-to-leaf area ratio (Huber value, vH). The observed coordination between vH and sapwood hydraulic conductivity (KS) and photosynthetic capacity (Vcmax) conformed to the proposed quantitative theory. Substantial hydraulic diversity was related to the trade-off between KS and vH. Leaf drought tolerance (inferred from turgor loss point, –Ψtlp) increased with wood density, but the trade-off between hydraulic efficiency (KS) and –Ψtlp was weak. Plant trait effects on vH were dominated by variation in KS, while effects of environment were dominated by variation in temperature.This research unifies hydraulics, photosynthesis and the leaf economics spectrum in a common theoretical framework, and suggests a route towards the integration of photosynthesis and hydraulics in land-surface models.
AU - Xu,H
AU - Wang,H
AU - Prentice,IC
AU - Harrison,S
AU - Wright,I
DO - 10.1111/nph.17656
EP - 1296
PY - 2021///
SN - 0028-646X
SP - 1286
TI - Coordination of plant hydraulic and photosynthetic traits: confronting optimality theory with field measurements
T2 - New Phytologist
UR - http://dx.doi.org/10.1111/nph.17656
UR - https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.17656
VL - 232
ER -