The research outputs from the The Methane and Environment Programme (MEP) have already had a positive impact on industry and policy makers in a variety of ways.

Here are some examples of where our research and expertise has been used to guide decisions on reducing emissions:

  • MEP played a key role in the development of the ‘Guiding Principles of Methane’, an agreement signed by eight of the largest oil and gas companies to commit to monitor and reduce supply chain emissions in November 2017.
  • Our work has been cited by the UK Committee on Climate Change report on the compatability of UK onshore oil and gas development with climate targets (July 2016) and the Oxford Institute for Energy Studies report on methane emissions (July 2017).
  • We also contributed to, and were cited by, the International Energy Agency’s World Energy Outlook special report on natural gas (November 2017).
  • The Programme has advised the UK government’s Department for Business, Energy & Industrial Strategy (BEIS).
  • Internationally, we have presented at the European Parliament on methane emissions from the energy industry in 2018, and the UN Palais de Nations for the UNECE Group of Experts on Gas in 2015, 2016, 2017 and 2018.
  • Dr Paul Balcombe gave the keynote presentation at the International Gas Union Methane Emissions Conference in London, March 2017.

Since the programme began in 2015, we have produced a set of key research outputs including white papers, journal articles and presentations.

White papers

Balcombe, P., Anderson, K., Speirs, J., Brandon, N., and Hawkes A. (2015) ‘Methane & CO2 emissions from the natural gas supply chain report’ Sustainable Gas Institute, Imperial College London.

The Sustainable Gas Institute’s first White Paper is a comprehensive evidence-based review of the available data on both methane and carbon dioxide emissions from the natural supply chain. The paper provides recommendations with the aim of assessing and improving climate mitigation potential at each stage in the chain.


Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Cooper J, Dubey L, Hawkes A, 2021,

    Methane detection and quantification in the upstream oil and gas sector: the role of satellites in emissions detection, reconciling and reporting

    , Environmental Science: Atmospheres, Vol: 2, Pages: 9-23, ISSN: 2634-3606

    Oil and gas activities are a major source of methane and in recent years multiple companies have made pledges to cut their emissions of this potent greenhouse gas. Satellites are a promising technology, but their relevance to emissions reconciliation and reporting has not yet been independently established. In this review paper, we assess the capabilities of satellites to determine their role in emissions detection, reconciling and reporting in the upstream section of the oil and gas value chain. In reconciling, satellites have a role in verifying emissions estimated by other technologies, as well as in determining what is causing discrepancies in emission estimates. There are many limitations to satellite usage which need to be addressed before their widescale or routine use by the sector, particularly relating to where they can be used, and high uncertainty associated with their emission estimates. However, where limitations are overcome, satellites could potentially transform the way emissions are reconciled and reported through long-term monitoring, building emission profiles, and tracking whether emission targets are being met. Satellites are valuable tools, not just to the oil and gas sector but to international governments and organisations, as abating methane is crucial for achieving Paris Agreement ambitions.

  • Journal article
    Cooper J, Balcombe P, Hawkes A, 2021,

    The quantification of methane emissions and assessment of emissions data for the largest natural gas supply chains

    , Journal of Cleaner Production, Vol: 320, Pages: 1-10, ISSN: 0959-6526

    Methane emitted from natural gas supply chains are a major source of greenhouse gas emissions, but there is uncertainty on the magnitude of emissions, how they vary, and which key factors influence emissions. This study estimates the variation in emissions across the major natural gas supply chains, alongside an estimate of uncertainty which helps identify the areas at the greatest emissions ‘risk’. Based on the data, we estimate that 26.4 Mt CH4 (14.5–48.2 Mt CH4) was emitted by these supply chains in 2017. The risk assessment identified a significant proportion of countries to be at high risk of high emissions. However, there is a large dependency on Tier 1 emission factors, inferring a high degree of uncertainty and a risk of inaccurate emission accounting. When emissions are recalculated omitting Tier 1 data, emissions reduce by 47% to 3.8-fold, downstream and upstream respectively, across regions. More efforts in collecting robust and transparent primary data should be made, particularly in Non-Annex 1 countries, to improve our understanding of methane emissions.

  • Journal article
    Lowes R, Woodman B, Speirs J, 2020,

    Heating in Great Britain: An incumbent discourse coalition resists an electrifying future

    , Environmental Innovation and Societal Transitions, Vol: 37, Pages: 1-17, ISSN: 2210-4224
  • Report
    Speirs J, Jalil-Vega F, Cooper J, Gerber Machado P, Giarola S, Brandon N, Hawkes Aet al., 2020,

    The flexibility of gas - what is it worth?

    , White Paper 5: The Flexibility of gas – what is it worth?, London, UK, Publisher: Sustainable Gas Institute, Imperial College London, 5

    What is the evidence on the flexibility value that gas vectors and gas networks can provide to support the future energy system?There is an increasing debate regarding the use of gas networks in providing support for the decarbonisation of energy systems.The perceived value of gas “vectors” – encompassing natural gas, hydrogen and biomethane – is that they may provide flexibility, helping to support daily and seasonal variation in energy demand, and increasingly intermittent electricity supply as renewable electricity generation increases as a proportion of the electricity mix.Arguments in support of gas suggest that electricity systems will find it difficult to maintain flexibility on their own, whilst also reducing greenhouse gas emissions and increasing production to meet new demand for heating and transport. Gas, on the other hand, is expected to provide flexibility at relatively low cost, and may be produced and used with relatively low greenhouse gas emissions.White Paper 5 investigates the evidence surrounding the flexibility provided by gas and gas networks and the cost of, and value provided by gas to the future energy system.

  • Journal article
    Speirs J, Balcombe P, Blomerus P, Stettler M, Achurra-Gonzalez P, Woo M, Ainalis D, Cooper J, Sharafian A, Merida W, Crow D, Giarola S, Shah N, Brandon N, Hawkes Aet al., 2020,

    Natural gas fuel and greenhouse gas emissions in trucks and ships

    , Progress in Energy, Vol: 2, Pages: 012002-012002
  • Journal article
    Cooper J, Balcombe P, Hawkes A, 2019,

    Life cycle environmental impacts of natural gas drivetrains used in UK road freighting and impacts to UK emission targets

    , Science of the Total Environment, Vol: 674, Pages: 482-493, ISSN: 0048-9697

    Using natural gas as a fuel in the road freight sector instead of diesel could cut greenhouse gas and air quality emissions but the switch alone is not enough to meet UK climate targets. A life cycle assessment (LCA) has been conducted comparing natural gas trucks to diesel, biodiesel, dimethyl ether and electric trucks on impacts to climate change, land use change, air quality, human health and resource depletion. This is the first LCA to consider a full suite of environmental impacts and is the first study to estimate what impact natural gas could have on reducing emissions form the UK freight sector. If LNG is used, climate change impacts could be up to 33% lower per km and up to 12% lower per kWh engine output. However, methane emissions will eliminate any benefits if they exceed 1.5–3.5% of throughput for typical fuel consumption. For non-climate impacts, natural gas exhibits lower emissions (11–66%) than diesel for all indicators. Thus, for natural gas climate benefits are modest. However, emissions of CO, methane and particulate matter are over air quality limits set for UK trucks. Of the other options, electric and biodiesel trucks perform best in climate change, but are the worst with respect to land use change (which could have significant impacts on overall climate change benefits), air quality, human toxicity and metals depletion indicators. Natural gas could help reduce the sector's emissions but deeper decarbonization options are required to meet 2030 climate targets, thus the window for beneficial utilisation is short.

  • Journal article
    Cooper J, Balcombe P, 2019,

    Life cycle environmental impacts of natural gas drivetrains used in road freighting

    , Procedia CIRP, Vol: 80, Pages: 334-339, ISSN: 2212-8271
  • Journal article
    Balcombe P, Brierley J, Lewis C, Skatvedt L, Speirs J, Hawkes A, Staffell Iet al., 2019,

    How to decarbonise international shipping: Options for fuels, technologies and policies

    , Energy Conversion and Management, Vol: 182, Pages: 72-88, ISSN: 0196-8904

    International shipping provides 80–90% of global trade, but strict environmental regulations around NOX, SOX and greenhouse gas (GHG) emissions are set to cause major technological shifts. The pathway to achieving the international target of 50% GHG reduction by 2050 is unclear, but numerous promising options exist. This study provides a holistic assessment of these options and their combined potential to decarbonise international shipping, from a technology, environmental and policy perspective. Liquefied natural gas (LNG) is reaching mainstream and provides 20–30% CO2 reductions whilst minimising SOX and other emissions. Costs are favourable, but GHG benefits are reduced by methane slip, which varies across engine types. Biofuels, hydrogen, nuclear and carbon capture and storage (CCS) could all decarbonise much further, but each faces significant barriers around their economics, resource potentials and public acceptability. Regarding efficiency measures, considerable fuel and GHG savings could be attained by slow-steaming, ship design changes and utilising renewable resources. There is clearly no single route and a multifaceted response is required for deep decarbonisation. The scale of this challenge is explored by estimating the combined decarbonisation potential of multiple options. Achieving 50% decarbonisation with LNG or electric propulsion would likely require 4 or more complementary efficiency measures to be applied simultaneously. Broadly, larger GHG reductions require stronger policy and may differentiate between short- and long-term approaches. With LNG being economically feasible and offering moderate environmental benefits, this may have short-term promise with minor policy intervention. Longer term, deeper decarbonisation will require strong financial incentives. Lowest-cost policy options should be fuel- or technology-agnostic, internationally applied and will require action now to ensure targets are met by 2050.

  • Report
    Speirs J, Balcombe P, Blomerus P, Stettler M, Brandon N, Hawkes Aet al., 2019,

    Can natural gas reduce emissions from transport?: Heavy goods vehicles and shipping

  • Journal article
    Parkinson B, Balcombe P, Speirs JF, Hawkes AD, Hellgardt Ket al., 2019,

    Levelized cost of CO2 mitigation from hydrogen production routes

    , Energy and Environmental Science, Vol: 12, Pages: 19-40, ISSN: 1754-5692

    Different technologies produce hydrogen with varying cost and carbon footprints over the entire resource supply chain and manufacturing steps. This paper examines the relative costs of carbon mitigation from a life cycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources by technology substitution. Production costs and life cycle emissions are parameterized and re-estimated from currently available assessments to produce robust ranges to describe uncertainties for each technology. Hydrogen production routes are then compared using a combination of metrics, levelized cost of carbon mitigation and the proportional decarbonization benchmarked against steam methane reforming, to provide a clearer picture of the relative merits of various hydrogen production pathways, the limitations of technologies and the research challenges that need to be addressed for cost-effective decarbonization pathways. The results show that there is a trade-off between the cost of mitigation and the proportion of decarbonization achieved. The most cost-effective methods of decarbonization still utilize fossil feedstocks due to their low cost of extraction and processing, but only offer moderate decarbonisation levels due to previous underestimations of supply chain emissions contributions. Methane pyrolysis may be the most cost-effective short-term abatement solution, but its emissions reduction performance is heavily dependent on managing supply chain emissions whilst cost effectiveness is governed by the price of solid carbon. Renewable electrolytic routes offer significantly higher emissions reductions, but production routes are more complex than those that utilise naturally-occurring energy-dense fuels and hydrogen costs are high at modest renewable energy capacity factors. Nuclear routes are highly cost-effective mitigation options, but could suffer from regionally varied perceptions of safety and concerns regarding prolife

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1250&limit=10&respub-action=search.html Current Millis: 1670224082380 Current Time: Mon Dec 05 07:08:02 GMT 2022