The research outputs from the The Methane and Environment Programme (MEP) have already had a positive impact on industry and policy makers in a variety of ways.

Here are some examples of where our research and expertise has been used to guide decisions on reducing emissions:

  • MEP played a key role in the development of the ‘Guiding Principles of Methane’, an agreement signed by eight of the largest oil and gas companies to commit to monitor and reduce supply chain emissions in November 2017.
  • Our work has been cited by the UK Committee on Climate Change report on the compatability of UK onshore oil and gas development with climate targets (July 2016) and the Oxford Institute for Energy Studies report on methane emissions (July 2017).
  • We also contributed to, and were cited by, the International Energy Agency’s World Energy Outlook special report on natural gas (November 2017).
  • The Programme has advised the UK government’s Department for Business, Energy & Industrial Strategy (BEIS).
  • Internationally, we have presented at the European Parliament on methane emissions from the energy industry in 2018, and the UN Palais de Nations for the UNECE Group of Experts on Gas in 2015, 2016, 2017 and 2018.
  • Dr Paul Balcombe gave the keynote presentation at the International Gas Union Methane Emissions Conference in London, March 2017.

Since the programme began in 2015, we have produced a set of key research outputs including white papers, journal articles and presentations.

White papers

Balcombe, P., Anderson, K., Speirs, J., Brandon, N., and Hawkes A. (2015) ‘Methane & CO2 emissions from the natural gas supply chain report’ Sustainable Gas Institute, Imperial College London.

The Sustainable Gas Institute’s first White Paper is a comprehensive evidence-based review of the available data on both methane and carbon dioxide emissions from the natural supply chain. The paper provides recommendations with the aim of assessing and improving climate mitigation potential at each stage in the chain.

 

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Cooper J, Dubey L, Hawkes A, 2022,

    Methane detection and quantification in the upstream oil and gas sector: the role of satellites in emissions detection, reconciling and reporting

    , Environmental Science: Atmospheres

    <jats:p>Satellites could revolutionise the way global oil and gas methane is reported. There are many barriers to overcome before satellites can play an active role in methane emissions reporting.</jats:p>

  • Journal article
    Cooper J, Balcombe P, Hawkes A, 2021,

    The quantification of methane emissions and assessment of emissions data for the largest natural gas supply chains

    , Journal of Cleaner Production, Vol: 320, Pages: 1-10, ISSN: 0959-6526

    Methane emitted from natural gas supply chains are a major source of greenhouse gas emissions, but there is uncertainty on the magnitude of emissions, how they vary, and which key factors influence emissions. This study estimates the variation in emissions across the major natural gas supply chains, alongside an estimate of uncertainty which helps identify the areas at the greatest emissions ‘risk’. Based on the data, we estimate that 26.4 Mt CH4 (14.5–48.2 Mt CH4) was emitted by these supply chains in 2017. The risk assessment identified a significant proportion of countries to be at high risk of high emissions. However, there is a large dependency on Tier 1 emission factors, inferring a high degree of uncertainty and a risk of inaccurate emission accounting. When emissions are recalculated omitting Tier 1 data, emissions reduce by 47% to 3.8-fold, downstream and upstream respectively, across regions. More efforts in collecting robust and transparent primary data should be made, particularly in Non-Annex 1 countries, to improve our understanding of methane emissions.

  • Journal article
    Bakkaloglu S, Lowry D, Fisher R, France J, Brunner D, Chen H, Nisbet Eet al., 2021,

    Quantification of methane emissions from UK biogas plants

    , Waste Management, Vol: 124, Pages: 82-93, ISSN: 0956-053X

    The rising number of operational biogas plants in the UK brings a new emissions category to consider for methane monitoring, quantification and reduction. Minimising methane losses from biogas plants to the atmosphere is critical not only because of their contribution of methane to global warming but also with respect to the sustainability of renewable energy production. Mobile greenhouse gas surveys were conducted to detect plumes of methane emissions from the biogas plants in southern England that varied in their size, waste feed input materials and biogas utilization. Gaussian plume modelling was used to estimate total emissions of methane from ten biogas plants based on repeat passes through the plumes. Methane emission rates ranged from 0.1 to 58.7 kg CH4 hr-1, and the percentage of losses relative to the calculated production rate varied between 0.02 and 8.1%. The average emission rate was 15.9 kg CH4 hr-1, and the average loss was 3.7%. In general, methane emission rates from smaller farm biogas plants were higher than from larger food waste biogas plants. We also suggest that biogas methane emissions may account for between 0.4 and 3.8%, with an average being 1.9% of the total methane emissions in the UK excluding the sewage sludge biogas plants.

  • Journal article
    Cooper J, Balcombe P, 2019,

    Life cycle environmental impacts of natural gas drivetrains used in road freighting

    , Procedia CIRP, Vol: 80, Pages: 334-339, ISSN: 2212-8271
  • Journal article
    Balcombe P, Speirs J, Johnson E, Martin J, Brandon N, Hawkes Aet al., 2018,

    The carbon credentials of hydrogen gas networks and supply chains

    , Renewable and Sustainable Energy Reviews, Vol: 91, Pages: 1077-1088, ISSN: 1364-0321

    Projections of decarbonisation pathways have typically involved reducing dependence on natural gas grids via greater electrification of heat using heat pumps or even electric heaters. However, many technical, economic and consumer barriers to electrification of heat persist. The gas network holds value in relation to flexibility of operation, requiring simpler control and enabling less expensive storage. There may be value in retaining and repurposing gas infrastructure where there are feasible routes to decarbonisation. This study quantifies and analyses the decarbonisation potential associated with the conversion of gas grids to deliver hydrogen, focusing on supply chains. Routes to produce hydrogen for gas grids are categorised as: reforming natural gas with (or without) carbon capture and storage (CCS); gasification of coal with (or without) CCS; gasification of biomass with (or without) CCS; electrolysis using low carbon electricity. The overall range of greenhouse gas emissions across routes is extremely large, from − 371 to 642 gCO 2 eq/kW h H2 . Therefore, when including supply chain emissions, hydrogen can have a range of carbon intensities and cannot be assumed to be low carbon. Emissions estimates for natural gas reforming with CCS lie in the range of 23–150 g/kW h H2 , with CCS typically reducing CO 2 emissions by 75%. Hydrogen from electrolysis ranges from 24 to 178 gCO 2 eq/kW h H2 for renewable electricity sources, where wind electricity results in the lowest CO 2 emissions. Solar PV electricity typically exhibits higher emissions and varies significantly by geographical region. The emissions from upstream supply chains is a major contributor to total emissions and varies considerably across different routes to hydrogen. Biomass gasification is characterised by very large negative emissions in the supply chain and very large positive emissions in the gasification process. Therefore, improvements in total emissions are large if even small i

  • Journal article
    Balcombe P, Brandon NP, Hawkes AD, 2017,

    Characterising the distribution of methane and carbon dioxide emissions from the natural gas supply chain

    , Journal of Cleaner Production, Vol: 172, Pages: 2019-2032, ISSN: 0959-6526

    Methane and CO2 emissions from the natural gas supply chain have been shown to vary widely butthere is little understanding about the distribution of emissions across supply chain routes,processes, regions and operational practises. This study defines the distribution of total methaneand CO2 emissions from the natural gas supply chain, identifying the contribution from each stageand quantifying the effect of key parameters on emissions. The study uses recent high-resolutionemissions measurements with estimates of parameter distributions to build a probabilistic emissionsmodel for a variety of technological supply chain scenarios. The distribution of emissions resemblesa log-log-logistic distribution for most supply chain scenarios, indicating an extremely heavy tailedskew: median estimates which represent typical facilities are modest at 18 – 24 g CO2 eq./ MJ HHV,but mean estimates which account for the heavy tail are 22 – 107 g CO2 eq./ MJ HHV. To place thesevalues into context, emissions associated with natural gas combustion (e.g. for heat) areapproximately 55 g CO2/ MJ HHV. Thus, some supply chain scenarios are major contributors to totalgreenhouse gas emissions from natural gas. For methane-only emissions, median estimates are 0.8 –2.2% of total methane production, with mean emissions of 1.6 - 5.5%. The heavy tail distribution isthe signature of the disproportionately large emitting equipment known as super-emitters, whichappear at all stages of the supply chain. The study analyses the impact of different technologicaloptions and identifies a set of best technological option (BTO) scenarios. This suggests thatemissions-minimising technology can reduce supply chain emissions significantly, with this studyestimating median emissions of 0.9% of production. However, even with the emissions-minimisingtechnologies, evidence suggests that the influence of the super-emitters remains. Therefore,emissions-minimising technology is only part of the soluti

  • Journal article
    Balcombe P, Anderson K, Speirs J, Brandon N, Hawkes Aet al., 2016,

    The natural gas supply chain: the importance of methane and carbon dioxide emissions

    , ACS Sustainable Chemistry & Engineering, Vol: 5, Pages: 3-20, ISSN: 2168-0485

    Natural gas is typically considered to be the cleaner-burning fossil fuel that could play an important role within a restricted carbon budget. While natural gas emits less CO2 when burned than other fossil fuels, its main constituent is methane, which has a much stronger climate forcing impact than CO2 in the short term. Estimates of methane emissions in the natural gas supply chain have been the subject of much controversy, due to uncertainties associated with estimation methods, data quality, and assumptions used. This Perspective presents a comprehensive compilation of estimated CO2 and methane emissions across the global natural gas supply chain, with the aim of providing a balanced insight for academia, industry, and policy makers by summarizing the reported data, locating the areas of major uncertainty, and identifying where further work is needed to reduce or remove this uncertainty. Overall, the range of documented estimates of methane emissions across the supply chain is vast among an aggregation of different geological formations, technologies, plant age, gas composition, and regional regulation, not to mention differences in estimation methods. Estimates of combined methane and CO2 emissions ranged from 2 to 42 g CO2 eq/MJ HHV, while methane-only emissions ranged from 0.2% to 10% of produced methane. The methane emissions at the extraction stage are the most contentious issue, with limited data available but potentially large impacts associated with well completions for unconventional gas, liquids unloading, and also the transmission stage. From the range of literature estimates, a constrained range of emissions was estimated that reflects the most recent and reliable estimates: total supply chain GHG emissions were estimated to be between 3.6 and 42.4 g CO2 eq/MJ HHV, with a central estimate of 10.5. The presence of “super emitters”, a small number of facilities or equipment that cause extremely high emissions, is found across all supply chai

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1178&limit=10&respub-action=search.html Current Millis: 1638883821087 Current Time: Tue Dec 07 13:30:21 GMT 2021