The publication feed below is often incomplete and out of date; for an up to date summary of our publications please see Google Scholar or Pub Med

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Yu Z, Brannigan JA, Rangachari K, Heal WP, Wilkinson AJ, Holder AA, Leatherbarrow RJ, Tate EWet al., 2015,

    Discovery of pyridyl-based inhibitors of <i>Plasmodium falciparum N</i>-myristoyltransferase

    , MEDCHEMCOMM, Vol: 6, Pages: 1767-1772, ISSN: 2040-2503
  • Journal article
    Kelly DJ, Warren SC, Alibhai D, Kumar S, Alexandrov Y, Munro I, Margineanu A, McCormack J, Welsh NJ, Serwa RA, Thinon E, Kongsema M, McGinty J, Talbot C, Murray EJ, Stuhmeier F, Neil MAA, Tate EW, Braga VMM, Lam EW-F, Dunsby C, French PMWet al., 2015,

    Automated multiwell fluorescence lifetime imaging for Forster resonance energy transfer assays and high content analysis

    , ANALYTICAL METHODS, Vol: 7, Pages: 4071-4089, ISSN: 1759-9660
  • Journal article
    Bunney TD, Cole AR, Broncel M, Esposito D, Tate EW, Katan Met al., 2014,

    Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    , STRUCTURE, Vol: 22, Pages: 1831-1843, ISSN: 0969-2126
  • Journal article
    Paape D, Bell AS, Heal WP, Hutton JA, Leatherbarrow RJ, Tate EW, Smith DFet al., 2014,

    Using a Non-Image-Based Medium-Throughput Assay for Screening Compounds Targeting <i>N</i>-myristoylation in Intracellular <i>Leishmania</i> Amastigotes

    , PLOS NEGLECTED TROPICAL DISEASES, Vol: 8, ISSN: 1935-2735
  • Journal article
    Hutton JA, Goncalves V, Brannigan JA, Paape D, Wright MH, Waugh TM, Roberts SM, Bell AS, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EWet al., 2014,

    Structure-Based Design of Potent and Selective Leishmania <i>N</i>-Myristoyltransferase Inhibitors

    , JOURNAL OF MEDICINAL CHEMISTRY, Vol: 57, Pages: 8664-8670, ISSN: 0022-2623
  • Journal article
    Douse CH, Maas SJ, Thomas JC, Garnett JA, Sun Y, Cota E, Tate EWet al., 2014,

    Crystal Structures of Stapled and Hydrogen Bond Surrogate Peptides Targeting a Fully Buried Protein-Helix Interaction

    , ACS CHEMICAL BIOLOGY, Vol: 9, Pages: 2204-2209, ISSN: 1554-8929
  • Journal article
    Olaleye TO, Brannigan JA, Roberts SM, Leatherbarrow RJ, Wilkinson AJ, Tate EWet al., 2014,

    Peptidomimetic inhibitors of N-myristoyltransferase from human malaria and leishmaniasis parasites

    , Organic & Biomolecular Chemistry, Vol: 12, Pages: 8132-8137, ISSN: 1477-0539

    N-Myristoyltransferase (NMT) has been shown to be essential in Leishmania and subsequently validated as a drug target in Plasmodium. Herein, we discuss the use of antifungal NMT inhibitors as a basis for inhibitor development resulting in the first sub-micromolar peptidomimetic inhibitors of Plasmodium and Leishmania NMTs. High-resolution structures of these inhibitors with Plasmodium and Leishmania NMTs permit a comparative analysis of binding modes, and provide the first crystal structure evidence for a ternary NMT-Coenzyme A/myristoylated peptide product complex.

  • Journal article
    Thinon E, Serwa RA, Broncel M, Brannigan JA, Brassat U, Wright MH, Heal WP, Wilkinson AJ, Mann DJ, Tate EWet al., 2014,

    Global profiling of co- and post-translationally N-myristoylated proteomes in human cells

    , Nature Communications, Vol: 5, Pages: 1-13, ISSN: 2041-1723

    Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells.

  • Journal article
    Ciepla P, Konitsiotis AD, Serwa RA, Masumoto N, Leong WP, Dallman MJ, Magee AI, Tate EWet al., 2014,

    New chemical probes targeting cholesterylation of Sonic Hedgehog in human cells and zebrafish

    , Chemical Science, Vol: 5, Pages: 4249-4259, ISSN: 2041-6520

    Sonic Hedgehog protein (Shh) is a morphogen molecule important in embryonic development and in theprogression of many cancer types in which it is aberrantly overexpressed. Fully mature Shh requiresattachment of cholesterol and palmitic acid to its C- and N-termini, respectively. The study of lipidatedShh has been challenging due to the limited array of tools available, and the roles of theseposttranslational modifications are poorly understood. Herein, we describe the development andvalidation of optimised alkynyl sterol probes that efficiently tag Shh cholesterylation and enable itsvisualisation and analysis through bioorthogonal ligation to reporters. An optimised probe was shown tobe an excellent cholesterol biomimetic in the context of Shh, enabling appropriate release of tagged Shhfrom signalling cells, formation of multimeric transport complexes and signalling. We have used thisprobe to determine the size of transport complexes of lipidated Shh in culture medium and expressionlevels of endogenous lipidated Shh in pancreatic ductal adenocarcinoma cell lines through quantitativechemical proteomics, as well as direct visualisation of the probe by fluorescence microscopy anddetection of cholesterylated Hedgehog protein in developing zebrafish embryos. These sterol probesprovide a set of novel and well-validated tools that can be used to investigate the role of lipidation onactivity of Shh, and potentially other members of the Hedgehog protein family

  • Journal article
    Guttery DS, Poulin B, Ramaprasad A, Wall RJ, Ferguson DJP, Brady D, Patzewitz E-M, Whipple S, Straschil U, Wright MH, Mohamed AMAH, Radhakrishnan A, Arold ST, Tate EW, Holder AA, Wickstead B, Pain A, Tewari Ret al., 2014,

    Genome-wide Functional Analysis of Plasmodium Protein Phosphatases Reveals Key Regulators of Parasite Development and Differentiation

    , Cell Host & Microbe, Vol: 16, Pages: 128-140, ISSN: 1934-6069

    Reversible protein phosphorylation regulated by kinasesand phosphatases controls many cellular processes.Although essential functions for the malariaparasite kinome have been reported, the roles ofmost protein phosphatases (PPs) during Plasmodiumdevelopment are unknown. We report a functionalanalysis of the Plasmodium berghei protein phosphatome,which exhibits high conservation with theP. falciparum phosphatome and comprises 30 predictedPPs with differential and distinct expressionpatterns during various stages of the life cycle. Genedisruption analysis of P. berghei PPs reveals thathalf of the genes are likely essential for asexualblood stage development, whereas six are requiredfor sexual development/sporogony in mosquitoes.Phenotypic screening coupled with transcriptomesequencing unveiled morphological changes andaltered gene expression in deletion mutants of twoN-myristoylated PPs. These findings provide systematicfunctional analyses of PPs in Plasmodium, identifyhow phosphatases regulate parasite developmentand differentiation, and can inform the identification ofdrug targets for malaria.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=870&limit=10&page=13&respub-action=search.html Current Millis: 1713647936723 Current Time: Sat Apr 20 22:18:56 BST 2024