Many Tribology Group publications are Open Access thanks to funding from the EPSRC.

Citation

BibTex format

@article{Pagkalis:2021:10.1007/s11249-021-01438-6,
author = {Pagkalis, K and Spikes, H and Jelita, Rydel J and Ingram, M and Kadiric, A},
doi = {10.1007/s11249-021-01438-6},
journal = {Tribology Letters},
pages = {1--20},
title = {The influence of steel composition on the formation and effectiveness of anti-wear films in tribological contacts},
url = {http://dx.doi.org/10.1007/s11249-021-01438-6},
volume = {69},
year = {2021}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The effectiveness of antiwear additives in laboratory tests is commonly evaluated using specimens made of AISI 52100 through-hardened bearing steel. However, many lubricated machine components are made of steels with significantly different material compositions, which raises an important practical question of whether the performance of antiwear additives with these other steel types is different from that established with AISI 52100. To help answer this question, this paper investigates the influence of steel composition on the formation and effectiveness of antiwear films. Four steels that are commonly used in tribological applications, namely AISI 52100 through-hardened bearing steel, 16MnCr5 case-carburised gear steel, M2 high speed steel and 440C stainless steel are tested in rolling-sliding, ball-on-disc contacts lubricated with three custom-made oils, one containing ZDDP and two containing different types of ashless antiwear additives. The relative effectiveness of their boundary films was assessed by measuring their thickness and associated wear and friction over 12 h of rubbing at two specimen roughness levels. For ZDDP it was found that the formation of antiwear film was not significantly influenced by steel composition or specimen surface roughness. A similar tribofilm thickness, final tribofilm roughness and friction was observed with all four steels. No measurable wear was observed. By contrast, for the ashless antiwear additives the thickness and effectiveness of their tribofilms was strongly influenced by steel composition, particularly at higher roughness levels. The exact trends in film thickness vs steel relationship depended on the specific chemistry of the ashless additive (ester-based or acid-based) but in general, relative to AISI 52100 steel, M2 steel promoted ashless tribofilm formation whilst 440C retarded ashless tribofilm formation. This behaviour is attributed to the presence of different alloying elements and the ability of the additives
AU - Pagkalis,K
AU - Spikes,H
AU - Jelita,Rydel J
AU - Ingram,M
AU - Kadiric,A
DO - 10.1007/s11249-021-01438-6
EP - 20
PY - 2021///
SN - 1023-8883
SP - 1
TI - The influence of steel composition on the formation and effectiveness of anti-wear films in tribological contacts
T2 - Tribology Letters
UR - http://dx.doi.org/10.1007/s11249-021-01438-6
UR - https://link.springer.com/article/10.1007%2Fs11249-021-01438-6
UR - http://hdl.handle.net/10044/1/89067
VL - 69
ER -