The Network aims to promote multi-disciplinary approaches to address challenging vaccine-related questions. This page contains a curated list of publications that highlight high-impact and collaborative approaches.

Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Crepin VF, Collins JW, Habibzay M, Frankel Get al., 2016,

    Citrobacter rodentium mouse model of bacterial infection.

    , Nature Protocols, Vol: 11, Pages: 1851-1876, ISSN: 1754-2189

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete.

  • Journal article
    Furniss RCD, Slater S, Frankel G, Clements Aet al., 2016,

    Enterohaemorrhagic E. coli modulates an ARF6:Rab35 signalling axis to prevent recycling endosome maturation during infection

    , Journal of Molecular Biology, Vol: 428, Pages: 3399-3407, ISSN: 1089-8638

    Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate a plethora of host cell processes to establish infection of the gut mucosa. This manipulation is achieved via the injection of bacterial effector proteins into host cells using a Type III secretion system. We have previously reported that the conserved EHEC and EPEC effector EspG disrupts recycling endosome function, reducing cell surface levels of host receptors through accumulation of recycling cargo within the host cell. Here we report that EspG interacts specifically with the small GTPases ARF6 and Rab35 during infection. These interactions target EspG to endosomes and prevent Rab35-mediated recycling of cargo to the host cell surface. Furthermore, we show that EspG has no effect on Rab35-mediated uncoating of newly formed endosomes, and instead leads to the formation of enlarged EspG/TfR/Rab11 positive, EEA1/Clathrin negative stalled recycling structures. Thus, this paper provides a molecular framework to explain how EspG disrupts recycling whilst also reporting the first known simultaneous targeting of ARF6 and Rab35 by a bacterial pathogen.

  • Journal article
    Saso A, Kampmann B, 2016,

    Vaccination against respiratory syncytial virus in pregnancy: a suitable tool to combat global infant morbidity and mortality?

    , Lancet Infectious Diseases, Vol: 16, Pages: e153-e163, ISSN: 1473-3099

    Respiratory syncytial virus (RSV) is the most important viral cause of pneumonia in early childhood (ie, younger than 2 years), responsible for high infant morbidity and mortality worldwide. It is widely accepted that an effective vaccine against RSV would have a major impact on child health globally. Despite the setbacks of the clinical trials in the 1960s, there has been a recent and significant revival of interest in vaccines against RSV, with several promising candidates undergoing evaluation. In this Review, we describe the epidemiological and immunological background to RSV infection and subsequently focus on the promising pipeline of RSV vaccine development. We discuss the potential for implementation of a safe and immunogenic RSV vaccine within the context of global health and with regards to a range of strategies, including vaccination of women during pregnancy, which is likely to emerge as a beneficial and feasible public health tool. This approach would provide interim protection to vulnerable, RSV-naive infants and other high risk groups, in which the burden of admission to hospital and death is greatest. Extending research and implementation from resource-rich to resource-poor settings is required to enhance our understanding of RSV immunity and inform vaccine development and delivery strategies for all settings. We summarise key outstanding issues for researchers and policy makers to understand the interplay of biological and non-biological factors affecting design and distribution of a successful RSV vaccine globally.

  • Journal article
    Clarke E, Saidu Y, Adetifa JU, Adigweme I, Hydara MB, Bashorun AO, Moneke-Anyanwoke N, Umesi A, Roberts E, Cham PM, Okoye ME, Brown KE, Niedrig M, Chowdhury PR, Clemens R, Bandyopadhyay AS, Mueller J, Jeffries DJ, Kampmann Bet al., 2016,

    Safety and immunogenicity of inactivated poliovirus vaccine when given with measles–rubella combined vaccine and yellow fever vaccine and when given via different administration routes: a phase 4, randomised, non-inferiority trial in The Gambia

    , Lancet Global Health, Vol: 4, Pages: e534-e547, ISSN: 2214-109X

    BACKGROUND: The introduction of the inactivated poliovirus vaccine (IPV) represents a crucial step in the polio eradication endgame. This trial examined the safety and immunogenicity of IPV given alongside the measles-rubella and yellow fever vaccines at 9 months and when given as a full or fractional dose using needle and syringe or disposable-syringe jet injector. METHODS: We did a phase 4, randomised, non-inferiority trial at three periurban government clinics in west Gambia. Infants aged 9-10 months who had already received oral poliovirus vaccine were randomly assigned to receive the IPV, measles-rubella, and yellow fever vaccines, singularly or in combination. Separately, IPV was given as a full intramuscular or fractional intradermal dose by needle and syringe or disposable-syringe jet injector at a second visit. The primary outcomes were seroprevalence rates for poliovirus 4-6 weeks post-vaccination and the rate of seroconversion between baseline and post-vaccination serum samples for measles, rubella, and yellow fever; and the post-vaccination antibody titres generated against each component of the vaccines. We did a per-protocol analysis with a non-inferiority margin of 10% for poliovirus seroprevalence and measles, rubella, and yellow fever seroconversion, and (1/3) log2 for log2-transformed antibody titres. This trial is registered with ClinicalTrials.gov, number NCT01847872. FINDINGS: Between July 10, 2013, and May 8, 2014, we assessed 1662 infants for eligibility, of whom 1504 were enrolled into one of seven groups for vaccine interference and one of four groups for fractional dosing and alternative route of administration. The rubella and yellow fever antibody titres were reduced by co-administration but the seroconversion rates achieved non-inferiority in both cases (rubella, -4·5% [95% CI -9·5 to -0·1]; yellow fever, 1·2% [-2·9 to 5·5]). Measles and poliovirus responses were unaffected (measles, 6·8%

  • Journal article
    Satou Y, Miyazato P, Ishihara Y, Yaguchi H, Melamed A, Miura M, Fukuda A, Nosaka K, Watanabe T, Rowan A, Nakao M, Bangham Cet al., 2016,

    The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome

    , Proceedings of the National Academy of Sciences of the United States of America, Vol: 113, Pages: 3054-3059, ISSN: 0027-8424

    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus thatcauses malignant and inflammatory diseases in 10% of infectedpeople. A typical host has between 104and 105clones of HTLV-1-infected T lymphocytes, each clone distinguished by the genomicintegration site of the single-copy HTLV-1 provirus. TheHBZgeneis constitutively expressed from the minus strand of the provirus,whereas plus-strand expression, required for viral propagation touninfected cells, is suppressed or intermittentin vivo, allowingescape from host immune surveillance. It remains unknown whatregulates this pattern of proviral transcription and latency. Herewe show that CTCF, a key regulator of chromatin structure andfunction, binds to the provirus at a sharp border in epigeneticmodifications in the pX region of the HTLV-1 provirus, in T cellsnaturally infected with HTLV-1. CTCF is a zinc-finger protein thatbinds to an insulator region in genomic DNA and plays a funda-mental role in controlling higher-order chromatin structure andgene expression in vertebrate cells. We show that CTCF boundto HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNAsplicing, and forms long-distance interactions with flanking hostchromatin. CTCF binding sites have been propagated through-out the genome by transposons in certain primate lineages, butCTCF binding has not previously been described in present-dayexogenous retroviruses. The presence of an ectopic CTCF bindingsite introduced by the retrovirus in tens of thousands of genomiclocations has the potential to cause widespread abnormalities inhost cell chromatin structure and gene expression.

  • Journal article
    So EC, Schroeder GN, Carson D, Mattheis C, Mousnier A, Broncel M, Tate EW, Frankel GMet al., 2016,

    The Rab-binding profiles of bacterial virulence factors during infection

    , Journal of Biological Chemistry, Vol: 291, Pages: 5832-5843, ISSN: 1083-351X

    Legionella pneumophila, the causativeagent of Legionnaire’s disease, uses its typeIV secretion system to translocate over 300effector proteins into host cells. Theseeffectors subvert host cell signalingpathways to ensure bacterial proliferation.Despite their importance for pathogenesis,the roles of most of the effectors are yet tobe characterized. Key to understanding thefunction of effectors is the identification ofhost proteins they bind during infection. Wepreviously developed a novel tandemaffinitypurification (TAP) approach usinghexahistidine and BirA-specificbiotinylation tags for isolating translocatedeffector complexes from infected cellswhose composition were subsequentlydeciphered by mass spectrometry. Here wefurther advanced the workflow for the TAPapproach and determined the infectiondependentinteractomes of the effectorsSidM and LidA, which were previouslyreported to promiscuously bind multiple RabGTPases in vitro. In this study we defined astringent subset of Rab GTPases targeted bySidM and LidA during infection, comprisingof Rab1A, 1B, 6 and 10; in addition, LidAtargets Rab14 and 18. Taken together, thisstudy illustrates the power of this approachto profile the intracellular interactomes ofbacterial effectors during infection

  • Journal article
    Jozwik A, Habibi MS, Paras A, Zhu J, Guvenel A, Dhariwal J, Almond M, Wong EH, Sykes A, Maybeno M, Del Rosario J, Trujillo-Torralbo MB, Mallia P, Sidney J, Peters B, Kon OM, Sette A, Johnston SL, Openshaw PJ, Chiu Cet al., 2016,

    Erratum: RSV-specific airway resident memory CD8+ T cells and differential disease severity after experimental human infection

    , Nature Communications, Vol: 7, ISSN: 2041-1723
  • Journal article
    Boelen LP, O'Neill PK, Quigley KJ, Reynolds CJ, Maillere B, Robinson JH, Lertmemongkolchai G, Altmann D, Boyton R, Asquith Ret al., 2016,

    BIITE: A Tool to Determine HLA Class II Epitopes from T Cell ELISpot Data

    , PLOS Computational Biology, Vol: 12, ISSN: 1553-734X

    Activation of CD4+ T cells requires the recognition of peptides that are presented by HLA class II molecules and can be assessed experimentally using the ELISpot assay. However, even given an individual’s HLA class II genotype, identifying which class II molecule is responsible for a positive ELISpot response to a given peptide is not trivial. The two main difficulties are the number of HLA class II molecules that can potentially be formed in a single individual (3–14) and the lack of clear peptide binding motifs for class II molecules. Here, we present a Bayesian framework to interpret ELISpot data (BIITE: Bayesian Immunogenicity Inference Tool for ELISpot); specifically BIITE identifies which HLA-II:peptide combination(s) are immunogenic based on cohort ELISpot data. We apply BIITE to two ELISpot datasets and explore the expected performance using simulations. We show this method can reach high accuracies, depending on the cohort size and the success rate of the ELISpot assay within the cohort.

  • Journal article
    Reglinski M, Lynskey NN, Choi YJ, Sriskandan S, Edwards RJet al., 2016,

    Development of a multicomponent vaccine for Streptococcus pyogenes based on the antigenic targets of IVIG

    , Journal of Infection, Vol: 72, Pages: 450-459, ISSN: 1532-2742

    ObjectivesDespite over a century of research and the careful scrutiny of many promising targets, there is currently no vaccine available for the prevention of Streptococcus pyogenes infection. Through analysis of the protective, anti-streptococcal components of pooled human immunoglobulin, we previously identified ten highly conserved and invariant S. pyogenes antigens that contribute to anti-streptococcal immunity in the adult population. We sought to emulate population immunity to S. pyogenes through a process of active vaccination, using the antigens targeted by pooled human immunoglobulin.MethodsSeven targets were produced recombinantly and mixed to form a multicomponent vaccine (Spy7). Vaccinated mice were challenged with S. pyogenes isolates representing four globally relevant serotypes (M1, M3, M12 and M89) using an established model of invasive disease.ResultsVaccination with Spy7 stimulated the production of anti-streptococcal antibodies, and limited systemic dissemination of M1 and M3 S. pyogenes from an intramuscular infection focus. Vaccination additionally attenuated disease severity due to M1 S. pyogenes as evidenced by reduction in weight loss, and modulated cytokine release.ConclusionSpy7 vaccination successfully stimulated the generation of protective anti-streptococcal immunity in vivo. Identification of reactive antigens using pooled human immunoglobulin may represent a novel route to vaccine discovery for extracellular bacteria.

  • Journal article
    Mehring-Le Doare KEK, Allen L, Gorringe A, Heath PT, Hesseling A, Kampmann B, Jones CEet al., 2016,

    Placental transfer of anti-Group B Streptococcus IgG antibody subclasses from HIV-infected and uninfected women to their uninfected infants

    , AIDS, Vol: 30, Pages: 471-475, ISSN: 0269-9370

    Objectives: Placental antibody transfer is impaired in the context of HIV infection, which may render HIV-exposed, uninfected infants vulnerable to group B Streptococcus (GBS) disease. The GBS antibody response predominately consists of immunoglobulin G2 (IgG2) antibody. Thus we determined whether concentration and placental transfer of anti-GBS antibody subclasses was altered in HIV-infected compared with HIV-uninfected mothers.Design: A retrospective analysis of anti-GBS antibody subclasses in 38 HIV-infected and 33 HIV-uninfected mothers and their uninfected infants.Methods: Sera were analysed using a novel flow cytometric assay that quantified binding of IgG1, IgG2, IgG3 and IgG4 to serotype (ST)Ia, STIII and STV GBS bacteria.Results: IgG2 binding to GBS STIa and V was lower in HIV-infected women compared with HIV-uninfected women. Moreover, IgG2 binding to GBS STIa was also lower in HIV-exposed, uninfected infants compared with unexposed infants. However, there were no statistically significant differences in the transplacental transfer ratio of IgG2 for any GBS serotype. The transplacental transfer of total IgG was reduced for GBS STIII and V and IgG1 subclass for STIII; placental transfer of all other subclasses was comparable in HIV-affected and HIV-unaffected pregnancies.Conclusion: Anti-GBS IgG2 placental transfer is not affected by HIV infection. This is important for functional antibody against the capsular polysaccharide of GBS and provides confidence that maternal GBS vaccination may result in functional activity in HIV-infected and uninfected women.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=979&limit=10&page=5&respub-action=search.html Current Millis: 1643303363407 Current Time: Thu Jan 27 17:09:23 GMT 2022