Search or filter publications

Filter by type:

Filter by publication type

Filter by year:



  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Yuan X, Kan X, Xu XY, Nienaber CAet al., 2020,

    Finite element modeling to predict procedural success of thoracic endovascular aortic repair in type A aortic dissection

    , JTCVS Techniques, Vol: 4, Pages: 40-47, ISSN: 2666-2507

    ObjectiveThoracic endovascular aortic repair (TEVAR) is recommended for type B aortic dissection and recently has even been used in selected cases of proximal (Stanford type A) aortic dissections in scenarios of prohibitive surgical risk. However, mechanical interactions between the native aorta and stent-graft are poorly understood, as some cases ended in failure. The aim of this study is to explore and better understand biomechanical changes after TEVAR and predict the result via virtual stenting.MethodsA case of type A aortic dissection was considered inoperable and selected for TEVAR. The procedure failed due to stent-graft migration even with precise deployment. A novel patient-specific virtual stent-graft deployment model based on finite element method was employed to analyze TEVAR-induced changes under such conditions. Two landing positions were simulated to investigate the reason for stent-graft migration immediately after TEVAR and explore options for optimization.ResultsSimulation of the actual procedure revealed that the proximal bare metal stent pushed the lamella into the false lumen and led to further stent-graft migration during the launch phase. An alternative landing position has reduced the local deformation of the dissection lamella and avoided stent-graft migration. Higher maximum principal stress (>20 KPa) was found on the lamella with deployment at the actual position, while the alternative strategy would have reduced the stress to <5 KPa.ConclusionsVirtual stent-graft deployment simulation based on finite element model could be helpful to both predict outcomes of TEVAR and better plan future endovascular procedures.

  • Journal article
    Chong MY, Gu B, Chan BT, Ong ZC, Xu XY, Lim Eet al., 2020,

    Effect of intimal flap motion on flow in acute type B aortic dissection by using fluid-structure interaction.

    , International Journal for Numerical Methods in Biomedical Engineering, Vol: 36, Pages: 1-22, ISSN: 1069-8299

    A monolithic, fully coupled fluid-structure interaction (FSI) computational framework was developed to account for dissection flap motion in acute type B aortic dissection (TBAD). Analysis of results included wall deformation, pressure, flow, wall shear stress (WSS), von. Mises stress and comparison of hemodynamics between rigid wall and FSI models. Our FSI model mimicked realistic wall deformation that resulted in maximum compression of the distal true lumen (TL) by 21.4%. The substantial movement of intimal flap mostly affected flow conditions in the false lumen (FL). Flap motion facilitated more flow entering the FL at peak systole, with the TL to FL flow split changing from 88:12 in the rigid model to 83:17 in the FSI model. There was more disturbed flow in the FL during systole (5.8% FSI vs. 5.2% rigid) and diastole (13.5% FSI vs. 9.8% rigid), via a λ2  -criterion. The flap-induced disturbed flow near the tears in the FSI model caused an increase of local WSS by up to 70.0% during diastole. This resulted in a significant reduction in the size of low time-averaged WSS (TAWSS) regions in the FL (113.11 cm2 FSI vs. 177.44 cm2 rigid). Moreover, the FSI model predicted lower systolic pressure, higher diastolic pressure, and hence lower pulse pressure. Our results provided new insights into the possible impact of flap motion on flow in aortic dissections, which are particularly important when evaluating hemodynamics of acute TBAD. This article is protected by copyright. All rights reserved.

  • Journal article
    Armour C, Guo B, Pirola S, Saitta S, Liu Y, Dong Z, Xu Xet al., 2020,

    The influence of inlet velocity profile on predicted flow in type B aortic dissection

    , Biomechanics and Modeling in Mechanobiology, ISSN: 1617-7940

    In order for computational fluid dynamics to provide quantitative parameters to aid in the clinical assessment of type B aortic dissection, the results must accurately mimic the hemodynamic environment within the aorta. The choice of inlet velocity profile (IVP) therefore is crucial; however, idealised profiles are often adopted, and the effect of IVP on hemodynamics in a dissected aorta is unclear. This study examined two scenarios with respect to the influence of IVP—using (a) patient-specific data in the form of a three-directional (3D), through-plane (TP) or flat IVP; and (b) non-patient-specific flow waveform. The results obtained from nine simulations using patient-specific data showed that all forms of IVP were able to reproduce global flow patterns as observed with 4D flow magnetic resonance imaging. Differences in maximum velocity and time-averaged wall shear stress near the primary entry tear were up to 3% and 6%, respectively, while pressure differences across the true and false lumen differed by up to 6%. More notable variations were found in regions of low wall shear stress when the primary entry tear was close to the left subclavian artery. The results obtained with non-patient-specific waveforms were markedly different. Throughout the aorta, a 25% reduction in stroke volume resulted in up to 28% and 35% reduction in velocity and wall shear stress, respectively, while the shape of flow waveform had a profound influence on the predicted pressure. The results of this study suggest that 3D, TP and flat IVPs all yield reasonably similar velocity and time-averaged wall shear stress results, but TP IVPs should be used where possible for better prediction of pressure. In the absence of patient-specific velocity data, effort should be made to acquire patient’s stroke volume and adjust the applied IVP accordingly.

  • Journal article
    Xu X, Manchester E, 2020,

    The effect of turbulence on transitional flow in the FDA’s benchmark nozzle model using large-eddy simulation

    , International Journal for Numerical Methods in Biomedical Engineering, Vol: 36, Pages: 1-15, ISSN: 1069-8299

    The Food and Drug Administration's (FDA) benchmark nozzle model has been studied extensively both experimentally and computationally. Although considerable efforts have been made on validations of a variety of numerical models against available experimental data, the transitional flow cases are still not fully resolved, especially with regards to detailed comparison of predicted turbulence quantities with experimental measurements. This study aims to fill this gap by conducting large‐eddy simulations (LES) of flow through the FDA's benchmark model, at a transitional Reynolds number of 2000. Numerical results are compared to previous interlaboratory experimental results, with an emphasis on turbulence characteristics. Our results show that the LES methodology can accurately capture laminar quantities throughout the model. In the pre‐jet breakdown region, predicted turbulence quantities are generally larger than high resolution experimental data acquired with laser Doppler velocimetry. In the jet breakdown regions, where maximum Reynolds stresses occur, Reynolds shear stresses show excellent agreement. Differences of up to 4% and 20% are observed near the jet core in the axial and radial normal Reynolds stresses, respectively. Comparisons between viscous and Reynolds shear stresses show that peak viscous shear stresses occur in the nozzle throat reaching a value of 18 Pa in the boundary layer, whilst peak Reynolds shear stresses occur in the jet breakdown region reaching a maximum value of 87 Pa. Our results highlight the importance in considering both laminar and turbulent contributions towards shear stresses and that neglecting the turbulence effect can significantly underestimate the total shear force exerted on the fluid.

  • Journal article
    Jarral OA, Tan MKH, Salmasi MY, Pirola S, Pepper JR, O'Regan DP, Xu XY, Athanasiou Tet al., 2020,

    Phase-contrast magnetic resonance imaging and computational fluid dynamics assessment of thoracic aorta blood flow: a literature review

    , European Journal of Cardio-Thoracic Surgery, Vol: 57, Pages: 438-446, ISSN: 1010-7940

    The death rate from thoracic aortic disease is on the rise and represents a growing global health concern as patients are often asymptomatic before acute events, which have devastating effects on health-related quality of life. Biomechanical factors have been found to play a major role in the development of both acquired and congenital aortic diseases. However, much is still unknown and translational benefits of this knowledge are yet to be seen. Phase-contrast cardiovascular magnetic resonance imaging of thoracic aortic blood flow has emerged as an exceptionally powerful non-invasive tool enabling visualization of complex flow patterns, and calculation of variables such as wall shear stress. This has led to multiple new findings in the areas of phenotype-dependent bicuspid valve flow patterns, thoracic aortic aneurysm formation and aortic prosthesis performance assessment. Phase-contrast cardiovascular magnetic resonance imaging has also been used in conjunction with computational fluid modelling techniques to produce even more sophisticated analyses, by allowing the calculation of haemodynamic variables with exceptional temporal and spatial resolution. Translationally, these technologies may potentially play a major role in the emergence of precision medicine and patient-specific treatments in patients with aortic disease. This clinically focused review will provide a systematic overview of key insights from published studies to date.

  • Journal article
    Pirola S, Guo B, Menichini C, Saitta S, Fu W, Dong Z, Xu XYet al., 2019,

    4D flow MRI-based computational analysis of blood flow in patient-specific aortic dissection

    , IEEE Transactions on Biomedical Engineering, Vol: 66, Pages: 3411-3419, ISSN: 0018-9294

    OBJECTIVE: Computational hemodynamics studies of aortic dissections usually combine patient-specific geometries with idealized or generic boundary conditions. In this study we present a comprehensive methodology for simulations of hemodynamics in type B aortic dissection (TBAD) based on fully patient-specific BCs. METHODS: Pre-operative 4D flow magnetic resonance imaging (MRI) and Doppler-wire pressure measurements (pre- and post-operative) were acquired from a TBAD patient. These data were used to derive boundary conditions for computational modelling of flow before and after thoracic endovascular repair (TEVAR). Validations of the computational results were performed by comparing predicted flow patterns with pre-TEVAR 4D flow MRI, as well as pressures with in vivo measurements. RESULTS AND CONCLUSION: Comparison of instantaneous velocity streamlines showed a good qualitative agreement with 4D flow MRI. Quantitative comparison of predicted pressures with pressure measurements revealed a maximum difference of 11 mmHg (-9.7%). Furthermore, our model correctly predicted the reduction of true lumen pressure from 74/115 mmHg pre-TEVAR to 64/107 mmHg post-TEVAR (diastolic/systolic pressures at entry tear level), compared to the corresponding measurements of 72/118 mmHg and 64/114 mmHg. This demonstrates that pre-TEVAR 4D flow MRI can be used to tune boundary conditions for post-TEVAR hemodynamic analyses.

  • Journal article
    Saitta S, Pirola S, Piatti F, Votta E, Lucherini F, Pluchinotta F, Carminati M, Lombardi M, Geppert C, Cuomo F, Figueroa C, Xu X, Redaelli Aet al., 2019,

    Evaluation of 4D Flow MRI-based non-invasive pressure assessment in aortic coarctations

    , Journal of Biomechanics, Vol: 94, Pages: 13-21, ISSN: 0021-9290

    Severity of aortic coarctation (CoA) is currently assessed by estimating trans-coarctation pressure drops through cardiac catheterization or echocardiography. In principle, more detailed information could be obtained non-invasively based on space- and time-resolved magnetic resonance imaging (4D flow) data. Yet the limitations of this imaging technique require testing the accuracy of 4D flow-derived hemodynamic quantities against other methodologies.With the objective of assessing the feasibility and accuracy of this non-invasive method to support the clinical diagnosis of CoA, we developed an algorithm (4DF-FEPPE) to obtain relative pressure distributions from 4D flow data by solving the Poisson pressure equation. 4DF-FEPPE was tested against results from a patient-specific fluid-structure interaction (FSI) simulation, whose patient-specific boundary conditions were prescribed based on 4D flow data. Since numerical simulations provide noise-free pressure fields on fine spatial and temporal scales, our analysis allowed to assess the uncertainties related to 4D flow noise and limited resolution.4DF-FEPPE and FSI results were compared on a series of cross-sections along the aorta. Bland-Altman analysis revealed very good agreement between the two methodologies in terms of instantaneous data at peak systole, end-diastole and time-averaged values: biases (means of differences) were +0.4 mmHg, −1.1 mmHg and +0.6 mmHg, respectively. Limits of agreement (2 SD) were ±0.978 mmHg, ±1.06 mmHg and ±1.97 mmHg, respectively. Peak-to-peak and maximum trans-coarctation pressure drops obtained with 4DF-FEPPE differed from FSI results by 0.75 mmHg and −1.34 mmHg respectively. The present study considers important validation aspects of non-invasive pressure difference estimation based on 4D flow MRI, showing the potential of this technology to be more broadly applied to the clinical practice.

  • Journal article
    Guo B, Dong Z, Pirola S, Liu Y, Menichini C, Xu XY, Guo D, Fu Wet al., 2019,

    Dissection level within aortic wall layers is associated with propagation of type B aortic dissection: a swine model study

    , European Journal of Vascular and Endovascular Surgery, Vol: 58, Pages: 415-425, ISSN: 1078-5884

    OBJECTIVE: Haemodynamic and geometric factors play pivotal roles in the propagation of acute type B aortic dissection (TBAD). The aim of this study was to evaluate the association between dissection level within all aortic layers and the propagation of acute TBAD in porcine aorta. METHODS: Twelve pig acute TBAD models were created. In model A, the aortic wall tear was superficial and close to the intima (thin intimal flap), whereas in model B it was deep and close to the adventitia (thick intimal flap). Dissection propagation was evaluated using angiography or computed tomography scans, and the haemodynamic measurements were acquired using Doppler wires. Most pigs were followed up at 1, 3, 6, 12, 18, and up to 24 months; four animals were euthanised at three and six months, respectively (two from each group). RESULTS: Both models were successfully created. No statistical difference was observed for the median antegrade propagation distance intra-operatively between the two models (p = .092). At 24 months, the longitudinal propagation distance was significantly greater in model B than in model A (p = .016). No statistical difference in retrograde propagation was noted (p = .691). Over time, aortic wall dissection progressed most notably over the first three months in model A, whereas it continued over the first 12 months in model B. Flow velocity was significantly greater in the true lumen than in false lumen at the level of the primary tear (p = .001) and in the middle of the dissection (p = .004). The histopathological images at three and six months demonstrated the fibres were stretched linearly at the outside wall of false lumen in both models, while the depth of intimal tears developed to be superficial and similar at the distal dissection. CONCLUSION: In this swine model of TBAD, a deeper intimal tear resulted in greater dissection propagation.

  • Journal article
    Menichini C, Pirola S, Guo B, Fu W, Dong Z, Xu XYet al., 2018,

    High wall stress may predict the formation of stent-graft-induced new entries after thoracic endovascular aortic repair

    , Journal of Endovascular Therapy, Vol: 25, Pages: 571-577, ISSN: 1526-6028

    PURPOSE: To explore the potential role of morphological factors and wall stress in the formation of stent-graft-induced new entries (SINE) based on computed tomography (CT) images after thoracic endovascular aortic repair (TEVAR). CASE REPORT: Two female patients aged 59 years (patient 1) and 44 years (patient 2) underwent TEVAR for type B dissection in the chronic (patient 1) or subacute (patient 2) phase. CT scans at 3-month follow-up showed varying degrees of false lumen thrombosis in both patients. At 14-month follow-up, a SINE was observed in patient 1 while the dissected aorta in the other patient remained stable. Morphological and finite element analyses were performed based on the first follow-up CT images. The computational results showed that the SINE patient had higher stent-graft tortuosity than the non-SINE patient and much higher wall stress in the region close to the distal SINE. CONCLUSION: This case study suggests that high stent-graft tortuosity can lead to high wall stress, which is potentially linked to the formation of SINE. Further large population-based studies are needed to confirm this preliminary finding.

  • Journal article
    Xu XY, Pirola S, Jarral O, O'Regan D, Asimakopoulos G, Anderson JR, Pepper J, Athanasiou Tet al., 2018,

    Computational study of aortic hemodynamics for patients with an abnormal aortic valve: the importance of secondary flow at the ascending aorta inlet

    , APL Bioengineering, Vol: 2, Pages: 026101-1-026101-14, ISSN: 2473-2877

    Blood flow in the aorta is helical, but most computational studies ignore the presence of secondary flow components at the ascending aorta (AAo) inlet. The aim of this study is to ascertain the importance of inlet boundary conditions (BCs) in computational analysis of flow patterns in the thoracic aorta based on patient-specific images, with a particular focus on patients with an abnormal aortic valve. Two cases were studied: one presenting a severe aortic valve stenosis and the other with a mechanical valve. For both aorta models, three inlet BCs were compared; these included the flat profile and 1D through-plane velocity and 3D phase-contrast magnetic resonance imaging derived velocity profiles, with the latter being used for benchmarking. Our results showed that peak and mean velocities at the proximal end of the ascending aorta were underestimated by up to 41% when the secondary flow components were neglected. The results for helical flow descriptors highlighted the strong influence of secondary velocities on the helical flow structure in the AAo. Differences in all wall shear stress (WSS)-derived indices were much more pronounced in the AAo and aortic arch (AA) than in the descending aorta (DAo). Overall, this study demonstrates that using 3D velocity profiles as inlet BC is essential for patient-specific analysis of hemodynamics and WSS in the AAo and AA in the presence of an abnormal aortic valve. However, predicted flow in the DAo is less sensitive to the secondary velocities imposed at the inlet; hence, the 1D through-plane profile could be a sufficient inlet BC for studies focusing on distal regions of the thoracic aorta.

  • Journal article
    Guo B, Pirola S, Guo D, Dong Z, Xu XY, Fu Wet al., 2018,

    Hemodynamic evaluation using four-dimensional flow magnetic resonance imaging for a patient with multichanneled aortic dissection

    , Journal of Vascular Surgery Cases and Innovative Techniques, Vol: 4, Pages: 67-71, ISSN: 2468-4287

    The hemodynamic function of multichanneled aortic dissection (MCAD) requires close monitoring and effective management to avoid potentially catastrophic sequelae. This report describes a 47-year-old man who underwent endovascular repair based on findings from four-dimensional (4D) flow magnetic resonance imaging of an MCAD. The acquired 4D flow data revealed complex, bidirectional flow patterns in the false lumens and accelerated blood flow in the compressed true lumen. The collapsed abdominal true lumen expanded unsatisfactorily after primary tear repair, which required further remodeling with bare stents. This case study demonstrates that hemodynamic analysis using 4D flow magnetic resonance imaging can help understand the complex pathologic changes of MCAD.

  • Journal article
    Pirola S, Cheng Z, Jarral OA, O'Regan DP, Pepper JR, Athanasiou T, Xu XYet al., 2017,

    On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics

    , Journal of Biomechanics, Vol: 60, Pages: 15-21, ISSN: 1873-2380

    Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features.

  • Conference paper
    Zhan W, Gedroyc W, Xu X, 2017,

    Numerical Simulation of Thermosensitive Liposome-mediated Delivery of Doxorubicin to Solid Tumour under High Intensity Focused Ultrasound Heating

    , International Conference on Computational and Mathematical Biomedical Engineering
  • Journal article
    Zhan W, Gedroyc W, Xu XY, 2017,

    The effect of tumour size on drug transport and uptake in 3-D tumour models reconstructed from magnetic resonance images

    , PLOS ONE, Vol: 12, ISSN: 1932-6203

    Drug transport and its uptake by tumour cells are strongly dependent on tumour properties, which vary in different types of solid tumours. By simulating the key physical and biochemical processes, a numerical study has been carried out to investigate the transport of anti-cancer drugs in 3-D tumour models of different sizes. The therapeutic efficacy for each tumour is evaluated by using a pharmacodynamics model based on the predicted intracellular drug concentration. Simulation results demonstrate that interstitial fluid pressure and interstitial fluid loss vary non-linearly with tumour size. Transvascular drug exchange, driven by the concentration gradient of unbound drug between blood and interstitial fluid, is more efficient in small tumours, owing to the low spatial-mean interstitial fluid pressure and dense microvasculature. However, this has a detrimental effect on therapeutic efficacy over longer periods as a result of enhanced reverse diffusion of drug to the blood circulation after the cessation of drug infusion, causing more rapid loss of drug in small tumours.

  • Journal article
    Gu B, Adjiman CS, Xu XY, 2016,

    The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations

    , Journal of Membrane Science, Vol: 527, Pages: 78-91, ISSN: 1873-3123

    Feed spacers are used in spiral wound reverse osmosis (RO) membrane modules to keep the membrane sheets apart as well as to enhance mixing. They are beneficial to membrane performance but at the expense of additional pressure loss. In this study, four types of feed spacer configurations are investigated, with a total of 20 geometric variations based on commercially available spacers and selected filament angles. The impact of feed spacer design on membrane performance is investigated by means of three-dimensional (3D) computational fluid dynamics (CFD) simulations, where the solution-diffusion model is employed for water and solute transport through RO membranes. Numerical simulation results show that, for the operating and geometric conditions examined, fully woven spacers outperform other spacer configurations in mitigating concentration polarisation (CP). When designed with a mesh angle of 60°, fully woven spacers also deliver the highest water flux, although the associated pressure drops are slightly higher than their nonwoven counterparts. Middle layer geometries with a mesh angle of 30° produce the lowest water flux. On the other hand, spacers with a mesh angle of 90° show the lowest pressure drop among all the filament arrangements examined. Furthermore, the computational model presented here can also be used to predict membrane performance for a given feed spacer type and geometry.

  • Journal article
    Menichini C, Cheng Z, Gibbs R, Xu XYet al., 2016,

    Predicting false lumen thrombosis in patient-specific models of aortic dissection

    , Journal of the Royal Society Interface, Vol: 13, Pages: 1-11, ISSN: 1742-5662

    Aortic dissection causes splitting of the aortic wall layers, allowing blood to enter a ‘false lumen’ (FL). For type B dissection, a significant predictor of patient outcomes is patency or thrombosis of the FL. Yet, no methods are currently available to assess the chances of FL thrombosis. In this study, we present a new computational model that is capable of predicting thrombus formation, growth and its effects on blood flow under physiological conditions. Predictions of thrombus formation and growth are based on fluid shear rate, residence time and platelet distribution, which are evaluated through convection–diffusion–reaction transport equations. The model is applied to a patient-specific type B dissection for which multiple follow-up scans are available. The predicted thrombus formation and growth patterns are in good qualitative agreement with clinical data, demonstrating the potential applicability of the model in predicting FL thrombosis for individual patients. Our results show that the extent and location of thrombosis are strongly influenced by aortic dissection geometry that may change over time. The high computational efficiency of our model makes it feasible for clinical applications. By predicting which aortic dissection patient is more likely to develop FL thrombosis, the model has great potential to be used as part of a clinical decision-making tool to assess the need for early endovascular intervention for individual dissection patients.

  • Journal article
    Gu B, Xu XY, Adjiman CS, 2016,

    A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details

    , Computers and Chemical Engineering, Vol: 96, Pages: 248-265, ISSN: 1873-4375

    A new one-dimensional predictive model for spiral wound modules (SWMs) applied to reverse osmosis membrane systems is developed by incorporating a detailed description of the geometric features of SWMs and considering flow in two directions. The proposed model is found to capture existing experimental data well, with similar accuracy to the widely-used plate model in which the SWM is assumed to consist of multiple thin rectangular channels. However, physical parameters that should in principle be model-independent, such as membrane permeability, are found to differ significantly depending on which model is used, when the same data sets are used for parameter estimation. Conversely, when using the same physical parameter values in both models, the water recovery predicted by the plate-like model is 12–20% higher than that predicted by the spiral model. This discrepancy is due to differences in the description of geometric features, in particular the active membrane area and the variable channel heights through the module, which impact on predicted performance and energy consumption. A number of design variables – the number of membrane leaves, membrane dimensions, centre pipe radius and the height of feed and permeate channels – are varied and their effects on performance, energy consumption and calculated module size are analysed. The proposed spiral model provides valuable insights into the effects of complex geometry on the performance of the SWM as well as of the overall system, at a low computational cost.

  • Journal article
    Su J, Huang C, Gu Z, Chen C, Xu Xet al., 2016,

    An Efficient RIGID Algorithm and Its Application to the Simulation of Particle Transport in Porous Medium

    , Transport in Porous Media, Pages: 1-33, ISSN: 1573-1634

    RIGID algorithm was recently proposed to identify the contact state between spherical particles and arbitrary-shaped walls, demonstrating significantly improved robustness, accuracy and efficiency compared to existing methods. It is an important module when coupling computational fluid dynamics with discrete element model to simulate particle transport in porous media. The procedure to identify particle and surface contact state is usually time-consuming and takes a large part of the CPU time for discrete element simulations of dense particle flow in complex geometries, especially in cases with a large number of particle–wall collisions (e.g. particle transport in porous media). This paper presents a new version of RIGID algorithm, namely ERIGID, which further improves the efficiency of the original algorithm through a number of new strategies including the recursive algorithm for particle-face pair selection, angle-testing algorithm for determining particle-face relations and the smallest index filter for fast rejection and storage of time invariant. Several specially designed numerical experiments have been carried out to test the performance of ERIGID and verify the effectiveness of these strategies. Finally, the improved algorithm is used to simulate particle transport in a rock treated as a porous medium. Our numerical results reveal several important flow phenomena and the primary reason for particle trapping inside the rock.

  • Journal article
    Kandail HS, Hamady M, Xu XY, 2016,

    Hemodynamic Functions of Fenestrated Stent Graft under Resting, Hypertension, and Exercise Conditions.

    , Frontiers in Surgery, Vol: 3, ISSN: 2296-875X

    The aim of this study was to assess the hemodynamic performance of a patient-specific fenestrated stent graft (FSG) under different physiological conditions, including normal resting, hypertension, and hypertension with moderate lower limb exercise. A patient-specific FSG model was constructed from computed tomography images and was discretized into a fine unstructured mesh comprising tetrahedral and prism elements. Blood flow was simulated using Navier-Stokes equations, and physiologically realistic boundary conditions were utilized to yield clinically relevant results. For a given cycle-averaged inflow of 2.08 L/min at normal resting and hypertension conditions, approximately 25% of flow was channeled into each renal artery. When hypertension was combined with exercise, the cycle-averaged inflow increased to 6.39 L/min but only 6.29% of this was channeled into each renal artery, which led to a 438.46% increase in the iliac flow. For all the simulated scenarios and throughout the cardiac cycle, the instantaneous flow streamlines in the FSG were well organized without any notable flow recirculation. This well-organized flow led to low values of endothelial cell activation potential, which is a hemodynamic metric used to identify regions at risk of thrombosis. The displacement forces acting on the FSG varied with the physiological conditions, and the cycle-averaged displacement force at normal rest, hypertension, and hypertension with exercise was 6.46, 8.77, and 8.99 N, respectively. The numerical results from this study suggest that the analyzed FSG can maintain sufficient blood perfusion to the end organs at all the simulated conditions. Even though the FSG was found to have a low risk of thrombosis at rest and hypertension, this risk can be reduced even further with moderate lower limb exercise.

  • Journal article
    Carallo C, Tripolino C, De Franceschi MS, Irace C, Xu XY, Gnasso Aet al., 2016,

    Carotid endothelial shear stress reduction with aging is associated with plaque development in twelve years

    , Atherosclerosis, Vol: 251, Pages: 63-69, ISSN: 1879-1484

    BACKGROUND AND AIMS: Atherosclerosis is associated with clinical, biochemical and haemodynamic risk factors. In a group of subjects studied twelve years apart, we evaluated carotid plaque development in relation to baseline and to changes at follow-up in common carotid haemodynamic profile. METHODS: Forty-eight participants were recruited to a cardiovascular disease prevention programme. Atherosclerotic plaques were evaluated and scored by echography. Endothelial shear stress, circumferential wall tension, and Peterson's elastic modulus as an index of arterial stiffness, were computed by echo-Doppler, along with blood viscosity data. Binary logistic regression analyses were used to test the association among the development of atherosclerosis, cardiovascular risk factors and haemodynamic variations. Analyses were also performed on participants who presented at the follow-up with carotid haemodynamic variations in the left or right common carotid only. RESULTS: Participants (69% male) were aged 64.5 ± 9.7 years at follow-up. Peak and mean endothelial shear stress was significantly lower at follow-up as previously reported; circumferential wall tension and arterial stiffness were significantly higher. Carotid plaque scores increased after 12 years (0.39 ± 0.72 vs. 0.67 ± 0.86, p < 0.01). Of the 96 common carotids analysed, shear stress reduction with aging was an independent predictor of carotid atherosclerosis (B = -0.063; odds ratio = 0.94; p = 0.01). Out of 48 participants, 21 (44%) showed shear stress reduction with aging in only one side of the body and, on this side, the plaque score increased (0.52 ± 0.98 vs. 0.90 ± 0.94, p < 0.05), remaining unchanged in the contralateral carotid tree. CONCLUSIONS: Aging-related shear stress reduction is an independent predictor of atherosclerosis development.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=653&limit=20&respub-action=search.html Current Millis: 1614564942630 Current Time: Mon Mar 01 02:15:42 GMT 2021