Imperial College London

ProfessorJamesDurrant

Faculty of Natural SciencesDepartment of Chemistry

Professor of Photochemistry
 
 
 
//

Contact

 

+44 (0)20 7594 5321j.durrant Website

 
 
//

Assistant

 

Miss Lisa Benbow +44 (0)20 7594 5883

 
//

Location

 

134aChemistrySouth Kensington Campus

//

Summary

 

Summary

The development of renewable, low cost energy technologies is a key scientific challenge for the 21st century. My group’s primary research interest is the development of new chemical approaches to solar energy conversion – harnessing solar energy either to produce electricity (photovoltaics) or molecular fuels (e.g.: hydrogen). We undertake fundamental scientific studies of new materials and device concepts, aiming to elucidate design principles which enable technological development. Our research is based around using transient laser spectroscopies to undertake photochemical studies of light driven electron and energy transfer reactions. Such studies are undertaken in parallel with device development and functional characterisation, including studies of materials and device stability, employing a wide range of molecular, polymeric and inorganic materials. Control of materials structure on the nanometer length scale is often essential for efficient utilisation of solar energy, and therefore the nano-morphology and the use of nanostructured materials is a key component of our research.

My group’s expertise is focused around photochemistry and physical chemistry. However our research is very much interdisciplinary, with expertise in the group ranging from  inorganic materials synthesis and photoelectrochemistry to device physics. We are fortunate to have many collaborations, both with academic groups and with industry, enabling us to work closely with colleagues working on innovative materials synthesis, theoretical modeling and practical device development and commercialisation, including in particular members of Imperial's Centre for Plastic Electronics and Artificial Leaf initiative and Swansea's SPECIFIC IKC.

More details of my research and my research team can be found on my group's website.

Alongside leading my research group at Imperial College, I am leading the Sêr Cymru Solar Initiative based at the SPECIFIC IKC, Swansea University, which compliments the more fundamental scientific studies of my group, and of my colleagues at Imperial College, through the technological development of printed photovoltaic devices.

I am also Director of Imperial's Centre for Plastic Electronics, and was founding director  of the UK's Solar Fuels Network.

If you are interested in joining my research group as a postdoctoral researcher, postgraduate student or for an undergraduate internship, please contact Xiaoe Li at xiao.li2@imperial.ac.uk.

Publications

Journals

Kafizas AG, Durrant JR, Transient Absorption Spectroscopy of Anatase and Rutile: the Impact of Morphology and Phase on Photocatalytic Activity, The Journal of Physical Chemistry C, ISSN:1932-7447

Armin A, Durrant JR, Shoaee S, 2017, Interplay Between Triplet-, Singlet-Charge Transfer States and Free Charge Carriers Defining Bimolecular Recombination Rate Constant of Organic Solar Cells, Journal of Physical Chemistry C, Vol:121, ISSN:1932-7447, Pages:13969-13976

Baran D, Ashraf RS, Hanifi DA, et al., 2017, Reducing the effciency-stability-cost gap of organic photovoltaics with highly effcient and stable small molecule acceptor ternary solar cells, Nature Materials, Vol:16, ISSN:1476-1122, Pages:363-+

Cha H, Wu J, Wadsworth A, et al., 2017, An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor, Advanced Materials, Vol:29, ISSN:0935-9648

Chadwick NP, Kafizas A, Quesada-Cabrera R, et al., 2017, Ultraviolet Radiation Induced Dopant Loss in a TiO2 Photocatalyst, Acs Catalysis, Vol:7, ISSN:2155-5435, Pages:1485-1490

More Publications