Imperial College London

ProfessorMohammedQuddus

Faculty of EngineeringDepartment of Civil and Environmental Engineering

Chair in Intelligent Transport Systems
 
 
 
//

Contact

 

+44 (0)20 7594 6121m.quddus Website

 
 
//

Assistant

 

Ms Maya Mistry +44 (0)20 7594 6100

 
//

Location

 

308Skempton BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

152 results found

Li Y, Cheng S, Feng Y, Zhang Y, Angeloudis P, Quddus M, Ochieng WYet al., 2024, Developing a novel approach in estimating urban commute traffic by integrating community detection and hypergraph representation learning, Expert Systems with Applications, Vol: 249, Pages: 123790-123790, ISSN: 0957-4174

Journal article

Chaudhry A, Haouari R, Papazikou E, Kumar Singh M, Sha H, Tympakianaki A, Nogues L, Quddus M, Weijermars W, Thomas P, Morris Aet al., 2024, Examining road safety impacts of Green Light Optimal Speed Advisory (GLOSA) system., Accid Anal Prev, Vol: 200

Mobility and environmental benefits of Green Light Optimal Speed Advisory (GLOSA) systems have been reported by many previous research studies, however, there is insufficient knowledge on the safety implications of such an application. For safe deployment of GLOSA system, it is most critical to identify and address potential safety issues in the design process. It can be argued that implementation of GLOSA system can improve safety by reducing traffic conflicts associated with the interrupted traffic flow at signalised intersections. However, more research findings are needed from field and simulation based studies to evaluate the impacts on safety under a variety of real-world scenarios. As part of the LEVITATE (Societal Level Impacts of Connected and Automated Vehicles) project under European Union's Horizon 2020 Programme, the main objective of this study is to examine the safety impacts of GLOSA under mixed traffic compositions with varying market penetration rates (MPR) of connected and automated vehicles (CAVs). A calibrated and validated microsimulation model (developed in Aimsun) of the greater Manchester area was used for this study where three signalised intersections in a corridor were identified for implementing GLOSA system. An improved algorithm was developed by identifying the potential issues/limitations in some of the GLOSA algorithms found in literature. Behaviours of CAVs were modelled based on the findings of a comprehensive literature review. Safety analysis was performed through processing the simulated vehicular trajectories in the surrogate safety assessment model (SSAM) by the Federal Highway Administration (FHWA). The surrogate safety assessment results showed small improvement in safety with the GLOSA implementation at multiple intersections in the test network only at low MPR (20%) scenarios of CAVs, as compared to the respective without GLOSA scenarios. No or rather slightly lower improvement in safety was observed with GLOSA implementat

Journal article

Zhao W, Gong S, Zhao D, Liu F, Sze NN, Quddus M, Huang Het al., 2024, Developing a new integrated advanced driver assistance system in a connected vehicle environment, Expert Systems with Applications, Vol: 238, ISSN: 0957-4174

Advanced driver assistance systems (ADASs) can effectively enhance driving and safety performance. Due to the inherent limitations of in-vehicle technologies concerning information sharing, existing studies mainly focus on demonstrating the effectiveness of onboard sensor-based individual ADAS functions rather than their collaborative effectiveness. Thanks to the emerging connected vehicle (CV) technologies, it is viable to physically realize the collaboration and coordination between different ADAS functions. This study aims to synthesize seven ADAS functions into an integrated advanced driving assistance system (iADAS) in a CV environment. The seven ADAS functions include omni-directional collision warning, lane-change warning, curve speed warning, emergency event notification, car-following guidance, identification of variable speed limits, and information services. The activation indicators and activation conditions of these ADAS functions are derived based on a single local coordinate system. This derivation has considered the real-time motion states of the ego and surrounding vehicles. Different ADAS functions are classified based on their roles in accident reduction, traffic efficiency enhancement, and driver convenience improvement. Afterwards, their priority of releasing information is set by considering the classification and primary functionality. Finally, the effectiveness of the iADAS is validated in field tests. Testing results reveal that the iADAS helps reduce rear-end collisions and prevent rollovers or sideslips on curved roads. Furthermore, younger drivers respond faster with higher driving stability regarding lateral collision warnings. Young, well-educated, and low-risk taking drivers maintain a short but safe time headway to the leading vehicle.

Journal article

Wang X, Azati Y, Quddus M, Cai B, Zhang Xet al., 2024, Statistical analysis of traffic crashes on mountainous freeway tunnel sections, Transportation Research Record, Vol: 2678, Pages: 1-10, ISSN: 0361-1981

Tunnels on mountainous freeways are affected by abrupt changes in brightness, complex geometric alignments, heavy traffic flow, bad weather, and other factors, some of which contribute toward tunnels having more traffic crashes than other sections of the freeway. Previous research, however, has given limited attention to tunnel length and heterogeneity in the parts of the tunnels, such as at the tunnels’ entrance and exit zones. Focusing on 36 tunnels on the Guidu Freeway in China’s Guizhou Province, this study collects data on crashes and their influencing factors over 2 years (2020–2021), constructs a negative binomial panel data random effects model, and analyzes single-vehicle crashes, multi-vehicle crashes, and total crashes. The results show that: 1) multi-vehicle crashes occur throughout the tunnel sections, 2) crashes are more likely to occur in long tunnel sections, 3) the crash frequency from the tunnel entrance zone to the mid zone is higher than in other areas of the tunnel, 4) the crash frequency is higher for circular curve/easy curve tunnel sections than for straight tunnel sections, 5) the crash frequency is higher for downhill and concave curve sections than for flat sections, 6) the crash frequency increases with heavy traffic flow and adverse weather conditions, and 7) the crash frequency increases as road surface skidding resistance and ride quality decrease. These findings can provide theoretical support for engineering improvement and the formulation and revision of specifications for designing freeway tunnel sections, especially in mountainous areas.

Journal article

Cai B, Quddus M, Wang X, Miao Yet al., 2024, New modeling approach for predicting disaggregated time-series traffic crashes, Transportation Research Record, Vol: 2678, Pages: 637-648, ISSN: 0361-1981

Short-window crash prediction is a fundamental step in proactive traffic safety management that can monitor traffic conditions in real time, identify unsafe traffic dynamics, and implement suitable interventions for traffic conflicts. Short-window (e.g., hourly) traffic-collision count data, however, exhibits excessive zeros and serial autocorrelation. Most of the commonly used regression-based models fail to address excessive zeros and temporal structure simultaneously in hourly traffic-collision prediction. For example, Hurdle models and zero-inflated (ZI) models can address the overdispersion issue caused by excessive zeros but lack power to control the significant spatiotemporal characteristics inherent in the time-based collision data. To overcome these issues simultaneously, this paper develops a novel statistical model termed Zero-Inflated Logarithmic link for count Time series (ZILT) which is based on the framework of ZI models. Covariates (e.g., speed, vehicle type, and traffic volume) were extracted through deep-learning computer vision methods in vehicle detection and tracking on the image space. This new statistical model (i.e., ZILT) performs better at solving the issues of excessive zeros and serial dependencies. The prediction accuracy of the ZILT model improved by around 5% in relation to zero-inflated Poisson (ZIP) and Hurdle models. Results show that traffic crashes happening in the previous hour and other covariates such as truck-to-car ratio, holiday effect, traffic flow, and speed have significant influence on collision occurrence. Findings from this study could be utilized by relevant transport agencies in developing engineering interventions and countermeasures to proactively manage road safety.

Journal article

Vulturius S, Budd L, Ison S, Quddus Met al., 2024, Commercial airline pilots' job satisfaction before and during the COVID-19 pandemic: a comparative study, Research in Transportation Business and Management, Vol: 53, ISSN: 2210-5395

The impact of the COVID-19 pandemic on the world's commercial aviation industry was unprecedented. National lockdowns and border closures effectively prohibited passenger air travel. Airlines responded by reducing operations, parking aircraft and making staff, including pilots, redundant. This research aims to examine the impact of COVID-19 on commercial airline pilots' job satisfaction before and during the pandemic and identify the workplace factors that affect it. Empirical data was gathered via an online survey which was distributed to members of three commercial airline pilot unions in Europe and Australasia in November 2021. 346 complete responses were received. Using Herzberg's 16 workplace factors as a theoretical frame for the survey and subsequent analysis, the findings showed that, overall, job satisfaction decreased during the pandemic. The largest effect sizes were observed for Salary, Job Security and Working Conditions while the smallest effect sizes were observed for Impacts on Personal Life, Responsibility and Recognition. The importance of effective communication between airline management and pilots was highlighted. The findings and recommendations regarding employee compensation, benefits and support packages are of relevance not only to airlines but also to other transport and economic sectors facing future disruptive events.

Journal article

Budd L, Bloor G, Ison S, Quddus Met al., 2024, The impact of COVID-19 related flight reductions on bird prevalence and behaviour at Manchester Airport, UK, and the implications for airport management, Research in Transportation Business and Management, Vol: 53, ISSN: 2210-5395

Airport management is a complex and multifarious activity, involving many operators including airlines, retailers and ground handlers, and processes. The presence of wildlife at airports poses a safety risk to aircraft operations and as such managing wildlife hazards is a mandatory legal responsibility. This is important not only from a safety perspective but also from the fact that safety incidents can impact the operational efficiency and the reputation of an airport. Airport operators are required to devise and enact site-specific Wildlife Hazard Management Plans (WHMP) to reduce the risk of aircraft-wildlife interaction under normal airport operating conditions. The COVID-19 pandemic, however, led to an unprecedented reduction in commercial air traffic and the partial or total suspension of flights at some airports. The aim of this paper is to examine the impact of COVID-19 related flight reductions on bird prevalence and behaviour and the potential implications for airport management. Drawing on an empirical dataset of wildlife observations at Manchester Airport, UK, in 2019 and 2020, this paper details the airfield ornithology before and during the pandemic and examines the impact of COVID-19 related flight reductions on bird prevalence and behaviour. The findings reveal variations in the frequency and apparency of individual species as well as changes in the spatial location of bird sightings on the airfield. The paper concludes by discussing the implications of these findings for post-pandemic operations and for the formulation of future airport wildlife hazard management policies.

Journal article

Sheng S, Formosa N, Hossain M, Quddus Met al., 2024, Advancements in lane marking detection: an extensive evaluation of current methods and future research direction, IEEE Transactions on Intelligent Vehicles, Pages: 1-12, ISSN: 2379-8858

As the automotive industry moves towards Autonomous Vehicles (AVs), developing reliable sensing systems such as lane marking detection, is crucial. Lane markings offer essential spatial and navigational cues for AVs' safety and efficiency. Therefore, it is vital to thoroughly understand the evolution and effectiveness of different lane marking detection technologies, particularly in identifying the challenges and influencing factors for their successful implementation. To facilitate an objective comparison, a comprehensive dataset was collected from a motorway in the UK employing an instrumented vehicle. This dataset contains representative scenarios including optimal conditions, faded lane markings, adverse weather conditions, nighttime and traffic congestion. Using this dataset, a comparative analysis of four prominent lane marking detection methods such as (i) Spatial Convolutional Neural Network, (ii) Lane detection model with attention mechanism, (iii) Inverse Saliency Pyramid Reconstruction Network (InSPyReNet) and (iv) REcurrent Feature-Shift Aggregator was conducted. InSPyReNet technique emerged superior, demonstrating outstanding precision and sensitivity in lane detection. The consistent evaluation approach in this research contributes to identifying the most suitable technique for robust lane marking detection under various environmental conditions. The study also navigates future research paths, emphasising model generalisation, and the importance of robustness in challenging conditions. The uniqueness of this research lies in its inclusive comparison of lane detection methods under varying conditions, evaluated on a single dataset. This not only serves as a valuable reference, but also opens new possibilities and avenues for future advancements in the field.

Journal article

Sha H, Singh MK, Haouari R, Papazikou E, Quddus M, Quigley C, Chaudhry A, Thomas P, Weijermars W, Morris Aet al., 2024, Network-wide safety impacts of dedicated lanes for connected and autonomous vehicles, Accident Analysis and Prevention, Vol: 195, ISSN: 0001-4575

Cooperative, Connected and Automated Mobility (CCAM) enabled by Connected and Autonomous Vehicles (CAVs) has potential to change future transport systems. The findings from previous studies suggest that these technologies will improve traffic flow, reduce travel time and delays. Furthermore, these CAVs will be safer compared to existing vehicles. As these vehicles may have the ability to travel at a higher speed and with shorter headways, it has been argued that infrastructure-based measures are required to optimise traffic flow and road user comfort. One of these measures is the use of a dedicated lane for CAVs on urban highways and arterials and constitutes the focus of this research. As the potential impact on safety is unclear, the present study aims to evaluate the safety impacts of dedicated lanes for CAVs. A calibrated and validated microsimulation model developed in AIMSUN was used to simulate and produce safety results. These results were analysed with the help of the Surrogate Safety Assessment Model (SSAM). The model includes human-driven vehicles (HDVs), 1st generation and 2nd generation autonomous vehicles (AVs) with different sets of parameters leading to different movement behaviour. The model uses a variety of cases in which a dedicated lane is provided at different type of lanes (inner and outer) of highways to understand the safety effects. The model also tries to understand the minimum required market penetration rate (MPR) of CAVs for a better movement of traffic on dedicated lanes. It was observed in the models that although at low penetration rates of CAVs (around 20%) dedicated lanes might not be advantageous, a reduction of 53% to 58% in traffic conflicts is achieved with the introduction of dedicated lanes in high CAV MPRs. In addition, traffic crashes estimated from traffic conflicts are reduced up to 48% with the CAVs. The simulation results revealed that with dedicated lane, the combination of 40-40-20 (i.e., 40% human-driven - 40% 1st ge

Journal article

Formosa N, Quddus M, Singh MK, Man CK, Morton C, Masera CBet al., 2024, An Experiment and Simulation Study on Developing Algorithms for CAVs to Navigate Through Roadworks, IEEE Transactions on Intelligent Transportation Systems, Vol: 25, Pages: 120-132, ISSN: 1524-9050

Journal article

Formosa N, Quddus M, Man CK, Singh MK, Morton C, Masera CBet al., 2024, Evaluating the Impact of Lane Marking Quality on the Operation of Autonomous Vehicles, Journal of Transportation Engineering, Part A: Systems, Vol: 150, ISSN: 2473-2907

Journal article

Wang X, Ye C, Quddus M, Morris Aet al., 2023, Pedestrian safety in an automated driving environment: calibrating and evaluating the responsibility-sensitive safety model, Accident Analysis and Prevention, Vol: 192, ISSN: 0001-4575

The severity of vehicle-pedestrian crashes has prompted authorities worldwide to concentrate on improving pedestrian safety. The situation has only become more urgent with the approach of automated driving scenarios. The Responsibility-Sensitive Safety (RSS) model, introduced by Mobileye®, is a rigorous mathematical model developed to facilitate the safe operation of automated vehicles. The RSS model has been calibrated for several vehicle conflict scenarios; however, it has not yet been tested for pedestrian safety. Therefore, this study calibrates and evaluates the RSS model for pedestrian safety using data from the Shanghai Naturalistic Driving Study. Nearly 400 vehicle-pedestrian conflicts were extracted from 8,000 trips by the threshold and manual check method, and then divided into 16 basic scenarios in three categories. Because crossing conflicts were the most serious and frequent, they were reproduced in MATLAB's Simulink with each vehicle replaced with a virtual automated vehicle loaded with the RSS controller module. With the objectives of maximizing safety and minimizing conservativeness, the non-dominated sorting genetic algorithm II was applied to calibrate the RSS model for vehicle-pedestrian conflicts. The safety performance of the RSS model was then compared with that of the commonly used active safety function, autonomous emergency braking (AEB), and with human driving. Findings verified that the RSS model was safer in vehicle-pedestrian conflicts than both the AEB model and human driving. Its performance also yielded the best test results in producing smooth and stable driving. This study provides a reliable reference for the safe control of automated vehicles with respect to pedestrians.

Journal article

Singh MK, Haouari R, Papazikou E, Sha H, Quddus M, Chaudhry A, Thomas P, Morris Aet al., 2023, Examining parking choices of connected and autonomous vehicles, Transportation Research Record, Vol: 2677, Pages: 589-601, ISSN: 0361-1981

Raising parking charges is a measure that restricts the use of private vehicles. With the introduction of connected and autonomous vehicles (CAVs), the demand for parking has the potential to reduce as CAVs may not park at ‘pay to park’ areas as they are able to “cruise” or return home. However, it might not be financially feasible for them to return to their origin if the destination region is far away. Therefore, the question is: how could we develop parking policies in the CAVs era? To determine the best parking strategy for CAVs, four scenarios were tested in this paper: (i) enter and park within the destination area, (ii) enter, drop off, and return to the origin, (iii) enter, drop off, and return to outside parking and (iv) enter and drive around. Since real-world parking demand data for CAVs are not available, a simulation model of the road network in Santander (Spain) was employed to collect data on both CAV operations (e.g., conservative versus aggressive behaviors) and parking choices. Multinomial logistic regression model was used to identify the best parking option for CAVs. Performance indicators such as traffic, emissions, and safety were employed to compare the performance of a range of parking alternatives. It was found that the balanced scenario (i.e., combination of all parking choices) performs better with the greatest change in delay (around 32%). With 100% CAV market penetration, traffic crashes were reduced by 67%. This study will help local authorities formulate parking policies so that CAVs can park efficiently.

Journal article

Schumann H-H, Haitao H, Quddus M, 2023, Passively generated big data for micro-mobility: state-of-the-art and future research directions, Transportation Research Part D: Transport and Environment, Vol: 121, ISSN: 1361-9209

The sharp rise in popularity of micro-mobility poses significant challenges in terms of ensuring its safety, addressing its social impacts, mitigating its environmental effects, and designing its systems. Meanwhile, micro-mobility is characterised by its richness in passively generated big data that has considerable potential to address the challenges. Despite an increase in recent literature utilising passively generated micro-mobility data, knowledge and findings are fragmented, limiting the value of the data collected. To fill this gap, this article provides a timely review of how micro-mobility research and practice have exploited passively generated big data and its applications to address major challenges of micro-mobility. Despite its clear advantages in coverage, resolution, and the removal of human errors, passively generated big data needs to be handled with consideration of bias, inaccuracies, and privacy concerns. The paper also highlights areas requiring further research and provides new insights for safe, efficient, sustainable, and equitable micro-mobility.

Journal article

Formosa N, Quddus M, Man CK, Timmis Aet al., 2023, Appraising machine and deep learning techniques for traffic conflict prediction with class imbalance, Data Science for Transportation, Vol: 5, ISSN: 2948-135X

Predicting traffic conflicts is pivotal for vehicle-based active safety system to prevent crashes. Yet, conflict prediction is a challenging task as correct prediction depends on the nature of data and techniques employed. Moreover, traffic conflicts data are naturally imbalanced with traffic conflicts being the minority class. Working with imbalanced dataset might result in biased and inaccurate predictions. Therefore, this study aims to appraise machine learning and deep learning techniques systematically, to identify the optimal technique which can reliably predict real-time traffic conflicts by making use of cost-sensitive learning. Five machine learning techniques were optimised and utilised including: logistic regression (LR), Support vector machines (SVM), deep neural networks (DNN), long short-term memory (LSTM) and LSTM convolutional neural network (LSTM-CNN) to appraise their predictability performance using a large, imbalanced, and disaggregated traffic dataset. Unlike existing studies, a wide range of interconnected factors are employed for real-time traffic conflict prediction to provide a more reliable prediction outcome. A large heterodox dataset was gathered from the M1 motorway in the UK to evaluate these techniques. Results suggested that DNN outperform other techniques in predicting conflicts with 0.72 sensitivity at 5% false alarm rate. Such promising results reflect that DNNs can be further applied to deepen our understanding in predicting traffic conflicts design more reliable primary safety systems for intelligent vehicles. Moreover, exploring state-of-the-art classification techniques with class imbalance on big data is significant to the future of big data analytics.

Journal article

Adan F, Feng Y, Angeloudis P, Quddus M, Ochieng Wet al., 2023, Constrained Multi-Agent Reinforcement Learning Policies for Cooperative Intersection Navigation and Traffic Compliance, Pages: 4079-4085, ISSN: 2153-0009

End to end learning systems are becoming increasingly common in autonomous driving research, from perception, to planning and control. In particular, distributed reinforcement learning systems have demonstrated their applicability to the intersection navigation scenario. Such systems learn via a scalar reward signal from the environment and its design is crucial to the overall performance at the task. In this paper, we investigate an alternative approach to achieving desirable behavior by instead applying constraints to the action spaces and policies of the agents while maintaining a relatively sparse reward regimen. Initial experiments in a simulation environment have demonstrated the efficacy of this approach with simple restrictions in a discrete action space when compared to traditional traffic signal controllers and other Q-learning MARL algorithms. The performance analysis suggest that a more flexible action restriction may be more appropriate but nonetheless validates the utility of the approach by minimising delay and time loss, which we hope will stimulate additional research in policy constraints for autonomous driving.

Conference paper

Yi D, Fang H, Hua Y, Su J, Quddus M, Han Jet al., 2022, Improving Synthetic to Realistic Semantic Segmentation With Parallel Generative Ensembles for Autonomous Urban Driving, IEEE Transactions on Cognitive and Developmental Systems, Vol: 14, Pages: 1496-1506, ISSN: 2379-8920

Semantic segmentation is paramount for autonomous vehicles to have a deeper understanding of the surrounding traffic environment and enhance safety. Deep neural networks (DNNs) have achieved remarkable performances in semantic segmentation. However, training such a DNN requires a large amount of labeled data at the pixel level. In practice, it is a labor-intensive task to manually annotate dense pixel-level labels. To tackle the problem associated with a small amount of labeled data, deep domain adaptation (DDA) methods have recently been developed to examine the use of synthetic driving scenes so as to significantly reduce the manual annotation cost. Despite remarkable advances, these methods, unfortunately, suffer from the generalizability problem that fails to provide a holistic representation of the mapping from the source image domain to the target image domain. In this article, we, therefore, develop a novel ensembled DDA to train models with different upsampling strategies, discrepancy, and segmentation loss functions. The models are, therefore, complementary with each other to achieve better generalization in the target image domain. Such a design does not only improves the adapted semantic segmentation performance but also strengthens the model reliability and robustness. Extensive experimental results demonstrate the superiorities of our approach over several state-of-the-art methods.

Journal article

Yang K, Quddus M, Antoniou C, 2022, Developing a new real-time traffic safety management framework for urban expressways utilizing reinforcement learning tree, ACCIDENT ANALYSIS AND PREVENTION, Vol: 178, ISSN: 0001-4575

Journal article

Man CK, Quddus M, Theofilatos A, Yu R, Imprialou Met al., 2022, Wasserstein generative adversarial network to address the imbalanced data problem in real-time crash risk prediction, IEEE Transactions on Intelligent Transportation Systems, Vol: 23, Pages: 23002-23013, ISSN: 1524-9050

Real-time crash risk prediction models aim to identify pre-crash conditions as part of active traffic safety management. However, traditional models which were mainly developed through matched case-control sampling have been criticised due to their biased estimations. In this study, the state-of-art class balancing method known as the Wasserstein Generative Adversarial Network (WGAN) was introduced to address the class imbalance problem in the model development. An extremely imbalanced dataset consisted of 257 crashes and over 10 million non-crash cases from M1 Motorway in United Kingdom for 2017 was then utilized to evaluate the proposed method. The real-time crash prediction model was developed by employing Deep Neural Network (DNN) and Logistic Regression (LR). Crash predictions were performed under different crash to non-crash ratios where synthetic crashes were generated by Wasserstein Generative Adversarial Network (WGAN), Synthetic Minority Over-sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN) sampling respectively. Comparisons were then made with algorithmic-level class balancing methods such as cost-sensitive learning and ensemble methods. Our findings suggest that WGAN clearly outperforms other oversampling methods in terms of handling the extremely imbalanced sample and the DNN model subsequently produces a crash prediction sensitivity of about 70% with a 5% false alarm rate. Based on the findings of this study, proactive traffic management strategies including Variable Speed Limit (VSL) and Dynamic Messing Signs (DMS) could be deployed to reduce the probability of crash occurrence.

Journal article

Formosa N, Quddus M, Ison S, Timmis Aet al., 2022, A new modelling approach for predicting vehicle-based safety threats, IEEE Transactions on Intelligent Transportation Systems, Vol: 23, Pages: 18175-18185, ISSN: 1524-9050

Existing autonomous driving systems of intelligent vehicles such as advanced driver assistant systems (ADAS) assess and quantify the level of potential safety threats. However, they may not be able to plan the best response to unexpected dangerous situations and do not have the ability to cope with uncertainties since not all vehicles can always keep a safe gap from preceding vehicles and drive at a desired velocity. Previous research has not taken such uncertainties into account, it is, therefore, necessary to develop models which are not restricted by the predefined movement patterns of a vehicle. Existing systems are based on a model that estimates the threat level based only on one factor Time-To-Collision (TTC). This approach is limited since it cannot handle all scenarios and ignores all uncertainties. To overcome these limitations, this paper utilised deep learning to develop a range of models that rely on a group of factors to reliably estimate the threat level and predict conflicts under uncertainty using the concept of looming '. Comparative analyses were undertaken by incorporating new varying input factors to each model (e.g., surrogate safety measures, vehicle kinematics, macroscopic traffic data). Real-world experiments demonstrated that adding new factors increases the reliability and sensitivity of the models. Results also indicated that the models that consider looming provide low false alarm rate extending their applications for a wider spectrum of traffic scenarios. This is paramount for ADAS as uncertainties are inherent in the deployment of connected and autonomous vehicles in a mixed traffic stream.

Journal article

Alotaibi S, Quddus M, Morton C, Imprialou Met al., 2022, Transport investment, railway accessibility and their dynamic impacts on regional economic growth, Research in Transportation Business and Management, Vol: 43, ISSN: 2210-5395

This paper examines the impact of large-scale transport investment and the resulting increase of accessibility on the Gross Domestic Product (GDP) in the Kingdom of Saudi Arabia (KSA). Spatial and temporal economic data for the 13 regions of the country from 1999 to 2018 are analyzed using static and dynamic panel data models. Both first difference GMM (Generalised Method of Moments) models and system GMM models fit the data satisfactorily, with system GMM models generally offering better modelling accuracies. The results show that the elasticity of the one-year lagged GDP variable is positive and statistically significant in all specifications considered, indicating the presence of a dynamic pattern toward economic growth. Generally, the value of transport investment for the one-year lag shows positive and significant statistical relationships with regional GDP among several specifications of the dynamic models. On the other hand, railway accessibility value presents positive and significant impact on GDP in two years lag. Our study finds that the impact of the monetary value of transport investment, in general, was manifested immediately in the following year. However, the railway accessibility improvement requires a period to deliver its benefits.

Journal article

Enoch M, Monsuur F, Palaiologou G, Quddus MA, Ellis-Chadwick F, Morton C, Rayner Ret al., 2022, When COVID-19 came to town: Measuring the impact of the coronavirus pandemic on footfall on six high streets in England, Environment and Planning B: Urban Analytics and City Science, Vol: 49, Pages: 1091-1111, ISSN: 2399-8083

Town centres in the economically developed world have struggled in recent years to attract sufficient visitors to remain economically sustainable. However, decline has not been uniform, and there is considerable variation in how different town centres have coped with these challenges. The arrival of the coronavirus (COVID-19) pandemic public health emergency in early 2020 has provided an additional reason for people to avoid urban centres for a sustained period. This paper investigates the impact of coronavirus on footfall in six town centres in England that exhibit different characteristics. It presents individual time series intervention model results based on data collected from Wi-fi footfall monitoring equipment and secondary sources over a 2-year period to understand the significance of the pandemic on different types of town centre environment. The data show that footfall levels fell by 57%–75% as a result of the lockdown applied in March 2020 and have subsequently recovered at different rates as the restrictions have been lifted. The results indicate that the smaller centres modelled have tended to be less impacted by the pandemic, with one possible explanation being that they are much less dependent on serving longer-distance commuters and on visitors making much more discretionary trips from further afield. It also suggests that recovery might take longer than previously thought. Overall, this is the first paper to study the interplay between footfall and resilience (as opposed to vitality) within the town centre context and to provide detailed observations on the impact of the first wave of coronavirus on town centres’ activity.

Journal article

Man CK, Quddus M, Theofilatos A, 2022, Transfer learning for spatio-temporal transferability of real-time crash prediction models., Accid Anal Prev, Vol: 165

Real-time crash prediction is a heavily studied area given their potential applications in proactive traffic safety management in which a plethora of statistical and machine learning (ML) models have been developed to predict traffic crashes in real-time. However, one of the fundamental issues relating to the application of these models is spatio-temporal transferability. The present paper attempts to address this gap of knowledge by combining Generative Adversarial Network (GAN) and transfer learning to examine the transferability of real-time crash prediction models under an extremely imbalanced data setting. Initially, a baseline model was developed using Deep Neural Network (DNN) with crash and microscopic traffic data collected from M1 Motorway in the UK in 2017. The dataset utilised in the baseline model is naturally imbalanced with 257 crash cases and 16,359,163 non-crash cases. To overcome data imbalance issue, Wasserstein GAN (WGAN) was utilised to generate synthetic crash data. Non-crash data were randomly undersampled due to computational limitations. The calibrated model was then applied to predict traffic crashes for five other datasets obtained from M1 (2018), M4 (2017 & 2018 separately) and M6 Motorway (2017 & 2018 separately) by using transfer learning. Model transferability was compared with standalone models and direct transfer from the baseline model. The study revealed that direct transfer is not feasible. However, models become transferable temporally, spatially, and spatio-temporally if transfer learning is applied. The predictability of the transferred models outperformed existing studies by achieving high Area Under Curve (AUC) values ranging between 0.69 and 0.95. The best transferred model can predict nearly 95% crashes with only a 5% false alarm rate by tuning thresholds. Furthermore, the performances of transferred models are on par with or better than the standalone model. The findings of this study proves that transfer learning

Journal article

Formosa N, Quddus M, Papadoulis A, Timmis Aet al., 2022, Validating a traffic conflict prediction technique for motorways using a simulation approach, Sensors, Vol: 22, Pages: 566-566, ISSN: 1424-8220

With the ever-increasing advancements in the technology of driver assistant systems, there is a need for a comprehensive way to identify traffic conflicts to avoid collisions. Although significant research efforts have been devoted to traffic conflict techniques applied for junctions, there is dearth of research on these methods for motorways. This paper presents the validation of a traffic conflict prediction algorithm applied to a motorway scenario in a simulated environment. An automatic video analysis system was developed to identify lane change and rear-end conflicts as ground truth. Using these conflicts, the prediction ability of the traffic conflict technique was validated in an integrated simulation framework. This framework consisted of a sub-microscopic simulator, which provided an appropriate testbed to accurately simulate the components of an intelligent vehicle, and a microscopic traffic simulator able to generate the surrounding traffic. Results from this framework show that for a 10% false alarm rate, approximately 80% and 73% of rear-end and lane change conflicts were accurately predicted, respectively. Despite the fact that the algorithm was not trained using the virtual data, the sensitivity was high. This highlights the transferability of the algorithm to similar road networks, providing a benchmark for the identification of traffic conflict and a relevant step for developing safety management strategies for autonomous vehicles.

Journal article

Ye M, Guan L, Quddus M, 2021, TDMP: Reliable Target Driven and Mobility Prediction based routing protocol in complex Vehicular Ad-hoc Network, Vehicular Communications, Vol: 31, ISSN: 2214-2096

Vehicle-to-everything (V2X) communication in vehicular ad hoc network (VANET) has emerged as a crucial component in advanced Intelligent Transport System (ITS) for information transmission and vehicular communication. One of the vital research challenges in VANET is the design and implementation of novel network routing protocols which bring reliable end-to-end connectivity and efficient packet transmission to V2X communication. The organically changing nature of road traffic vehicles poses a significant threat to VANET with respect to the accuracy and reliability of packets delivery. Therefore, position-based routing protocols tend to be the predominant method in VANET as they overcome rapid changes in vehicle movements effectively. However, existing routing protocols have some limitations such as (i) inaccurate in high dynamic network topology, (ii) defective link-state estimation (iii) poor movement prediction in heterogeneous road layouts. Therefore, a novel target-driven and mobility prediction (TDMP) based routing protocol is developed in this paper for high-speed mobility and dynamic topology of vehicles, fluctuant traffic flow and diverse road layouts in VANET. To implement an effective routing protocol, TDMP primarily involves the destination target of a driver for the mobility prediction and Received Signal Strength Indicator (RSSI) for the inter-vehicular link-status estimation. Compared to existing geographic routing protocols which mainly greedily forward the packet to the next-hop based on its current position and partial road layout, the proposed TDMP is able to enhance the packet transmission with the consideration of the estimation of inter-vehicular link status, and the prediction of vehicle positions dynamically in fluctuant mobility and global road layout. Based on the extensive simulations carried out on operational road environments with varying configurations and complexity, the experimental results show better performance in terms of improvin

Journal article

Monsuur F, Enoch M, Quddus M, Meek Set al., 2021, Modelling the impact of rail delays on passenger satisfaction, Transportation Research Part A: Policy and Practice, Vol: 152, Pages: 19-35, ISSN: 0965-8564

Rail use and rail traffic in the UK increased substantially in the 25 years from 1994 to the end of 2019, a situation which led to progressively more delays and increasingly dissatisfied passengers. This study aims to quantify how disruptions to rail services are perceived by passengers to highlight situations that cause the highest rates of dissatisfaction so that they can be more effectively managed by the rail industry. Passenger satisfaction data from 7000 or so responses to the UK National Rail Passenger Survey (NRPS) where passengers had experienced delays were integrated with Network Rail data of the exact operational performance (e.g. train punctuality, service frequency, delay cause, magnitude of delay) that was encountered on each surveyed trip. An ordered logit model was then applied which allows for random taste variation to understand how passenger satisfaction was affected by rail delays. The study found that passengers reacted negatively to delays over 30 min, and dissatisfaction was exacerbated when passengers had to stand during the journey and/or received poor information, and when trains were cancelled. Policy implications for train operators include: (1) only cancel trains as a last resort; (2) prioritise trains approaching the ten minute delay threshold; (3) prioritise minimising delays to trains carrying high numbers of standing passengers; (4) enhance information quality and information delivery mechanisms as far as possible. Government should re-orientate franchise contracts to: (1) incentivise train operating companies to place more emphasis on passenger satisfaction when implementing service recovery strategies; and (2) improve delay information provision. Already the results are helping rail operators and practitioners to develop targeted recovery strategies aimed at minimising passenger dissatisfaction. This is the first academic study to investigate how rail passenger satisfaction is influenced by operational factors such as real-time de

Journal article

Panagiota Deligianni S, Papadoulis A, Monsuur F, Quddus M, Enoch Met al., 2021, Improving School Travel Plan effectiveness through enhanced diagnostic tools, Case Studies on Transport Policy, Vol: 9, Pages: 1273-1283, ISSN: 2213-624X

Issues around the journey to school are often in the news, and so are never far removed from the public and political consciousness. School Travel Plans (STPs) have been proven to reduce car use and their impacts around the world but are not aswidespread as they might be because of a perceived lack of knowledge about the potential outcomes of less common packages of measures and the associated lack of skills in delivering those solutions in specific contexts. Accordingly, this study develops and then applies a low-cost and risk-reducing approach which first determines existing travel behaviour within a school context, and then measures the responses of parents to a range of potential solutions (a proxy for their likely effectiveness) before they are adopted. It draws on results from an on-site traffic survey, an online survey of 746 parents and employees and an online stated preference survey of 101 parents from four independent schools in Loughborough, England. The study finds that parents are more influenced by the price of alternatives than the price of car (though this is still important), whilst measures that are relatively low-cost, uncontroversial and easy to implement (i.e. bus app, supervised walking and lockers) can also potentially be effective and should therefore be important components of any future STP package. It is also clear that the approach used could be transferable to other similar pre-project evaluation exercises, subject to minor tweaks to enable context-specific issues to be incorporated.

Journal article

Papazikou E, Thomas P, Quddus M, 2021, Developing personalised braking and steering thresholds for driver support systems from SHRP2 NDS data., Accid Anal Prev, Vol: 160

Examining the relationships between the factors associated with the crash development enabled the realisation of driver support systems aiming to proactively avert and control crash causation at various points within the crash sequence. Developing such systems requires new insights in personalised pre-crash driver behaviour with respect to braking and steering to develop crash prevention strategies. Therefore, the current study utilises Strategic Highway Research Program 2 Naturalistic Driving Studies (SHRP2 NDS) data to investigate personalised steering and braking thresholds by examining the last stage of a crash sequence. More specifically, this paper carried out an in-depth examination of braking and steering manoeuvres observed in the final 30 s prior to safety critical events. Two algorithms were developed to extract braking and steering events by examining deceleration and yaw rate and another developed and applied to determine the sequence of the manoeuvres. Based on the analysis, thresholds for detecting emerging situations were recommended. The investigation of driver behaviour before the safety critical events, provides valuable insights into the transition from normal driving to safety critical scenarios. The results indicate that 20% of the drivers did not react to the impending event suggesting that they were not aware of the imminent safety critical situation. Future development of Advanced Driver Assistance Systems (ADAS) can focus on individual drivers' needs with tailored activation thresholds. The developed algorithms can facilitate driver behaviour and safety analysis for NDS while the thresholds recommended could be exploited for the design of new driver support systems.

Journal article

Wang X, Chen J, Quddus M, Zhou W, Shen Met al., 2021, Influence of familiarity with traffic regulations on delivery riders' e-bike crashes and helmet use: Two mediator ordered logit models., Accid Anal Prev, Vol: 159

Micro-mobility vehicles such as electric bicycles, or e-bikes, are becoming one of the essential transportation modes in metropolitan areas, and most deliveries in large cities are dependent on them. Due to the e-bike's popularity and vulnerability, e-bike crash occurrence has become a major traffic safety problem in many cities across the world; finding the most important human factors affecting e-bike safety has thus been an important recent issue in traffic safety analysis. Since delivery riders are a key group of e-bike users, and since helmet use plays a crucial role in reducing the severity of a crash, this study conducted a city-wide online survey to analyze the helmet usage of 6,941 delivery riders in Shanghai, China. To determine the in-depth mechanisms influencing helmet use and e-bike crash occurrence, including the direct and indirect effects of the relevant factors, two mediator ordered logistic regression models were employed. The mediator ordered logistic model was compared with the traditional logistic regression model, and was found to be superior for modeling indirect as well as direct influencing factors. Results indicate that riders' familiarity with traffic regulations (FTR) is an extremely important variable mediating between the independent variables of riders' educational level and age, and the dependent variables of helmet use and e-bike crashes. Improving riders' FTR can consequently increase helmet use and decrease crash occurrence. Authorities can apply these findings to develop appropriate countermeasures, particularly in legislation and rider training, to improve e-bike safety.

Journal article

Hussain RS, Quddus MA, Enoch MP, Ruikar KD, Brien N, Gartside Det al., 2021, Time series analysis of local authority policy interventions on highway works durations, Proceedings of the Institution of Civil Engineers: Transport, Vol: 174, Pages: 283-293, ISSN: 0965-092X

Highway works are highly inconvenient and disruptive for society. Accordingly, four highway policy interventions were investigated in Derby, UK, for potential corresponding reductions in highway works durations. Time series analysis was used to test the durational impacts on works led by Highway Authorities (HAs) and utility industries. The modelling results demonstrated that a highway works management permit scheme (chargeable) reduced utility works durations by 5·4% (727 work days annually). Conversely, three conflated interventions-namely, the permit scheme (cost-free to HAs), JCB Pothole Master deployment and construction direct labour organisation-did not make any statistically significant difference to HA works durations; however, introducing an automated works order management system (Woms) reduced HA works duration by 34% (6519 work days annually). The key finding of this study is that chargeable permit schemes can create the impetus for change, as demonstrated by the utility industry. Furthermore, the Woms revealed that back-office efficiency can lead to on-site efficiency in works execution.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00344654&limit=30&person=true