Imperial College London

Professor Nigel Brandon OBE FREng

Faculty of Engineering

Dean of the Faculty of Engineering
 
 
 
//

Contact

 

+44 (0)20 7594 8600n.brandon Website

 
 
//

Location

 

2.06Faculty BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

384 results found

Balcombe P, Brandon NP, Hawkes AD, 2018, Characterising the distribution of methane and carbon dioxide emissions from the natural gas supply chain, JOURNAL OF CLEANER PRODUCTION, Vol: 172, Pages: 2019-2032, ISSN: 0959-6526

JOURNAL ARTICLE

Balcombe P, Speirs J, Johnson E, Martin J, Brandon N, Hawkes Aet al., 2018, The carbon credentials of hydrogen gas networks and supply chains, RENEWABLE & SUSTAINABLE ENERGY REVIEWS, Vol: 91, Pages: 1077-1088, ISSN: 1364-0321

JOURNAL ARTICLE

Bertei A, Yufit V, Tariq F, Brandon NPet al., 2018, A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes, Journal of Power Sources, Vol: 396, Pages: 246-256, ISSN: 0378-7753

© 2018 The Author(s) The electrode microstructural properties significantly influence the efficiency and durability of many electrochemical devices including solid oxide fuel cells. Despite the possibility of simulating the electrochemical phenomena within real three-dimensional microstructures, the potential of such 3D microstructural information has not yet been fully exploited. We introduce here a completely new methodology for the advanced characterization of inhomogeneous current distribution based on a statistical analysis of the current of each particle within the microstructure. We quantify the large variation in local current distribution and link it to the particle size dispersion, indicating how particle coarsening can trigger further degradation. We identify two classes of particles: those transferring more current than average, which show 10–40% more particle-particle contacts, and those producing more current than average, characterized by ∼2.5 times larger three-phase boundary length per unit volume. These two classes of particles are mutually exclusive, which implies that up to the 30% of the electrode volume within the functional layer is underutilized. This fundamental insight goes well beyond the predictions of continuum modeling, allowing us to revisit the current standards regarding safe operating conditions and to suggest alternative strategies based on nanoparticle infiltration, template-assisted synthesis and additive manufacturing for designing more durable electrodes.

JOURNAL ARTICLE

Budinis S, Krevor S, Dowell NM, Brandon N, Hawkes Aet al., 2018, An assessment of CCS costs, barriers and potential, Energy Strategy Reviews, Vol: 22, Pages: 61-81, ISSN: 2211-467X

© 2018 Elsevier Ltd Global decarbonisation scenarios include Carbon Capture and Storage (CCS) as a key technology to reduce carbon dioxide (CO2) emissions from the power and industrial sectors. However, few large scale CCS plants are operating worldwide. This mismatch between expectations and reality is caused by a series of barriers which are preventing this technology from being adopted more widely. The goal of this paper is to identify and review the barriers to CCS development, with a focus on recent cost estimates, and to assess the potential of CCS to enable access to fossil fuels without causing dangerous levels of climate change. The result of the review shows that no CCS barriers are exclusively technical, with CCS cost being the most significant hurdle in the short to medium term. In the long term, CCS is found to be very cost effective when compared with other mitigation options. Cost estimates exhibit a high range, which depends on process type, separation technology, CO2transport technique and storage site. CCS potential has been quantified by comparing the amount of fossil fuels that could be used globally with and without CCS. In modelled energy system transition pathways that limit global warming to less than 2 °C, scenarios without CCS result in 26% of fossil fuel reserves being consumed by 2050, against 37% being consumed when CCS is available. However, by 2100, the scenarios without CCS have only consumed slightly more fossil fuel reserves (33%), whereas scenarios with CCS available end up consuming 65% of reserves. It was also shown that the residual emissions from CCS facilities is the key factor limiting long term uptake, rather than cost. Overall, the results show that worldwide CCS adoption will be critical if fossil fuel reserves are to continue to be substantively accessed whilst still meeting climate targets.

JOURNAL ARTICLE

Chen Z, Wang X, Brandon N, Atkinson Aet al., 2018, Numerical Study of Solid Oxide Fuel Cell Contacting Mechanics, FUEL CELLS, Vol: 18, Pages: 42-50, ISSN: 1615-6846

JOURNAL ARTICLE

Few S, Schmidt O, Offer GJ, Brandon N, Nelson J, Gambhir Aet al., 2018, Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: An analysis informed by expert elicitations, ENERGY POLICY, Vol: 114, Pages: 578-590, ISSN: 0301-4215

JOURNAL ARTICLE

Gadoue S, Chen K-W, Mitcheson P, Yufit V, Brandon Net al., 2018, Electrochemical Impedance Spectroscopy State of Charge Measurement for Batteries using Power Converter Modulation, 9th International Renewable Energy Congress (IREC), Publisher: IEEE, ISSN: 2378-3435

CONFERENCE PAPER

Hack J, Heenan TMM, Iacoviello F, Mansor N, Meyer Q, Shearing P, Brandon N, Brett DJLet al., 2018, A Structure and Durability Comparison of Membrane Electrode Assembly Fabrication Methods: Self-Assembled Versus Hot-Pressed, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol: 165, Pages: F3045-F3052, ISSN: 0013-4651

JOURNAL ARTICLE

Liu X, Marlow MN, Cooper SJ, Song B, Chen X, Brandon NP, Wu Bet al., 2018, Flexible all-fiber electrospun supercapacitor, JOURNAL OF POWER SOURCES, Vol: 384, Pages: 264-269, ISSN: 0378-7753

JOURNAL ARTICLE

Song B, Ruiz-Trejo E, Bertei A, Brandon NPet al., 2018, Quantification of the degradation of Ni-YSZ anodes upon redox cycling, JOURNAL OF POWER SOURCES, Vol: 374, Pages: 61-68, ISSN: 0378-7753

JOURNAL ARTICLE

Song B, Ruiz-Trejo E, Brandon NP, 2018, Enhanced mechanical stability of Ni-YSZ scaffold demonstrated by nanoindentation and Electrochemical Impedance Spectroscopy, JOURNAL OF POWER SOURCES, Vol: 395, Pages: 205-211, ISSN: 0378-7753

JOURNAL ARTICLE

Speirs J, Balcombe P, Johnson E, Martin J, Brandon N, Hawkes Aet al., 2018, A greener gas grid: What are the options, ENERGY POLICY, Vol: 118, Pages: 291-297, ISSN: 0301-4215

JOURNAL ARTICLE

Tariq F, Rubio-Garcia J, Yufit V, Bertei A, Chakrabarti BK, Kucernak A, Brandon Net al., 2018, Uncovering the mechanisms of electrolyte permeation in porous electrodes for redox flow batteries through real time in situ 3D imaging, SUSTAINABLE ENERGY & FUELS, Vol: 2, Pages: 2068-2080, ISSN: 2398-4902

JOURNAL ARTICLE

Zhang D, Cai Q, Taiwo OO, Yufit V, Brandon NP, Gu Set al., 2018, The effect of wetting area in carbon paper electrode on the performance of vanadium redox flow batteries: A three-dimensional lattice Boltzmann study, ELECTROCHIMICA ACTA, Vol: 283, Pages: 1806-1819, ISSN: 0013-4686

JOURNAL ARTICLE

Balcombe P, Anderson K, Speirs J, Brandon N, Hawkes Aet al., 2017, The Natural Gas Supply Chain: The Importance of Methane and Carbon Dioxide Emissions, ACS SUSTAINABLE CHEMISTRY & ENGINEERING, Vol: 5, Pages: 3-20, ISSN: 2168-0485

JOURNAL ARTICLE

Bertei A, Ruiz-Trejo E, Kareh K, Yufit V, Wang X, Tariq F, Brandon NPet al., 2017, The fractal nature of the three-phase boundary: A heuristic approach to the degradation of nanostructured solid oxide fuel cell anodes, NANO ENERGY, Vol: 38, Pages: 526-536, ISSN: 2211-2855

JOURNAL ARTICLE

Bertei A, Tariq F, Yufit V, Ruiz-Trejo E, Brandon NPet al., 2017, Guidelines for the Rational Design and Engineering of 3D Manufactured Solid Oxide Fuel Cell Composite Electrodes, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol: 164, Pages: F89-F98, ISSN: 0013-4651

JOURNAL ARTICLE

Biton M, Tariq F, Yufit V, Chen Z, Brandon Net al., 2017, Integrating multi-length scale high resolution 3D imaging and modelling in the characterisation and identification of mechanical failure sites in electrochemical dendrites, ACTA MATERIALIA, Vol: 141, Pages: 39-46, ISSN: 1359-6454

JOURNAL ARTICLE

Biton M, Yufit V, Tariq F, Kishimoto M, Brandon Net al., 2017, Enhanced Imaging of Lithium Ion Battery Electrode Materials, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol: 164, Pages: A6032-A6038, ISSN: 0013-4651

JOURNAL ARTICLE

Brandon N, Hagen A, Dawson R, Bucheli Oet al., 2017, “Solid Oxide Fuel Cells, Electrolyzers and Reactors: From Development to Delivery – EFCF2016”, Fuel Cells, Vol: 17, ISSN: 1615-6846

JOURNAL ARTICLE

Brandon NP, Kurban Z, 2017, Clean energy and the hydrogen economy, PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, Vol: 375, ISSN: 1364-503X

JOURNAL ARTICLE

Brandon NP, Ruiz-Trejo E, Boldrin P, 2017, Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells, ISBN: 9780128097243

© 2017 Elsevier Ltd. All rights reserved. Solid Oxide Fuel Cell Lifetime and Reliability: Critical Challenges in Fuel Cells presents in one volume the most recent research that aims at solving key issues for the deployment of SOFC at a commercial scale and for a wider range of applications. To achieve that, authors from different regions and backgrounds address topics such as electrolytes, contaminants, redox cycling, gas-tight seals, and electrode microstructure. Lifetime issues for particular elements of the fuel cells, like cathodes, interconnects, and fuel processors, are covered as well as new materials. They also examine the balance of SOFC plants, correlations between structure and electrochemical performance, methods for analysis of performance and degradation assessment, and computational and statistical approaches to quantify degradation. For its holistic approach, this book can be used both as an introduction to these issues and a reference resource for all involved in research and application of solid oxide fuel cells, especially those developing understanding in industrial applications of the lifetime issues. This includes researchers in academia and industrial R&D, graduate students and professionals in energy engineering, electrochemistry, and materials sciences for energy applications. It might also be of particular interest to analysts who are looking into integrating SOFCs into energy systems. Brings together in a single volume leading research and expert thinking around the broad topic of SOFC lifetime and durability. Explores issues that affect solid oxide fuel cells elements, materials, and systems with a holistic approach. Provides a practical reference for overcoming some of the common failure mechanisms of SOFCs. Features coverage of integrating SOFCs into energy systems.

BOOK

Chakrabarti B, Nir D, Yufit V, Tariq F, Rubio-Garcia J, Maher R, Kucernak A, Aravind PV, Brandon Net al., 2017, Performance Enhancement of Reduced Graphene Oxide-Modified Carbon Electrodes for Vanadium Redox-Flow Systems, CHEMELECTROCHEM, Vol: 4, Pages: 194-200, ISSN: 2196-0216

JOURNAL ARTICLE

Chen J, Bertei A, Ruiz-Trejo E, Atkinson A, Brandon NPet al., 2017, Characterization of Degradation in Nickel Impregnated Scandia-Stabilize Zirconia Electrodes during Isothermal Annealing, JOURNAL OF THE ELECTROCHEMICAL SOCIETY, Vol: 164, Pages: F935-F943, ISSN: 0013-4651

JOURNAL ARTICLE

Chen J, Ruiz-Trejo E, Atkinson A, Brandon NPet al., 2017, Microstructural and Electrochemical Characterisation of Degradation in Nickel Impregnated Scandia-stabilised Zirconia Electrode during Isothermal Annealing, 15th International Symposium on Solid Oxide Fuel Cells (SOFC), Publisher: ELECTROCHEMICAL SOC INC, Pages: 1125-1137, ISSN: 1938-5862

CONFERENCE PAPER

Chen X, Liu X, Childs P, Brandon N, Wu Bet al., 2017, A Low Cost Desktop Electrochemical Metal 3D Printer, ADVANCED MATERIALS TECHNOLOGIES, Vol: 2, ISSN: 2365-709X

JOURNAL ARTICLE

Chen Y, Ji L, Brandon N, Xie M, Scott K, Du W, Yang J, Wu Xet al., 2017, A study on the flow field design of lead flow batteries, Pages: 199-200

CONFERENCE PAPER

Chen Z, Atkinson A, Brandon N, 2017, Characterization of deformation and damage in porous sofc components via spherical indentation and simulation, Pages: 143-157, ISSN: 0196-6219

© 2018 by World Scientific Publishing Europe Ltd. The aim of this work is to present the methodology to characterize deformation and contact damage initiation and evolution in porous bulk and film components used in solid oxide fuel cells, based on indentation and simulation. Spherical indentation tests at a broad range of loads (50-10000 mN) were carried out on porous bulk and film electrodes with different levels of porosity, and on bilayer system. An axisymmetric model based on the Gurson model used for porous materials was developed to simulate the indentation processes. Elasticity and hardness of each component were reliably determined via both experiments and modelling. Inverse analysis via comparison of experimental indentation response curves and simulation-generated curves shows a very different relation between hardness and yield stress, compared with dense materials. Cracking behaviour was examined and appropriately explained by FEM results. Further insight of the deformation and damage behaviour was also obtained based on microstructural study using FIB-SEM. Overall, the study shows that the model developed in this work is highly applicable for the description the deformation and damage characteristics in porous bulk and film ceramics.

CONFERENCE PAPER

Chen Z, Wang X, Brandon N, Atkinson Aet al., 2017, Analysis of spherical indentation of porous ceramic films, JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, Vol: 37, Pages: 1031-1038, ISSN: 0955-2219

JOURNAL ARTICLE

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00170077&limit=30&person=true