Imperial College London

ProfessorPaoloVineis

Faculty of MedicineSchool of Public Health

Chair in Environmental Epidemiology
 
 
 
//

Contact

 

+44 (0)20 7594 3372p.vineis Website

 
 
//

Location

 

511Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Chadeau:2020:10.1016/j.metabol.2020.154292,
author = {Chadeau, M and Alfano, R and Ghantous, A and Keski-Rahkonen, P and Chatzi, L and Espin, Perez A and Herceg, Z and Kogevinas, M and de, Kok T and Nawrot, T and Novoloaca, A and Patel, C and Pizzi, C and Robinot, N and Rusconi, F and Scalbert, A and Sunyer, J and Vermeulen, R and Vrijheid, M and Vineis, P and Robinson, O and Plusquin, M},
doi = {10.1016/j.metabol.2020.154292},
journal = {Metabolism: clinical and experimental},
pages = {1--12},
title = {A multi-omic analysis of birthweight in newborn cord blood reveals new underlying mechanisms related to cholesterol metabolism},
url = {http://dx.doi.org/10.1016/j.metabol.2020.154292},
volume = {110},
year = {2020}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - BackgroundBirthweight reflects in utero exposures and later health evolution. Despite existing studies employing high-dimensional molecular measurements, the understanding of underlying mechanisms of birthweight remains limited.MethodsTo investigate the systems biology of birthweight, we cross-sectionally integrated the methylome, the transcriptome, the metabolome and a set of inflammatory proteins measured in cord blood samples, collected from four birth-cohorts (n=489). We focused on two sets of 68 metabolites and 903 CpGs previously related to birthweight and investigated the correlation structures existing between these two sets and all other omic features via bipartite Pearson correlations.ResultsThis dataset revealed that the set of metabolome and methylome signatures of birthweight have seven signals in common, including three metabolites [PC(34:2), plasmalogen PC(36:4)/PC(O-36:5), and a compound with m/z of 781.0545], two CpGs (on the DHCR24 and SC4MOL gene), and two proteins (periostin and CCL22). CCL22, a macrophage-derived chemokine has not been previously identified in relation to birthweight. Since the results of the omics integration indicated the central role of cholesterol metabolism, we explored the association of cholesterol levels in cord blood with birthweight in the ENVIRONAGE cohort (n=1097), finding that higher birthweight was associated with increased high-density lipoprotein cholesterol and that high-density lipoprotein cholesterol was lower in small versus large for gestational age newborns.ConclusionsOur data suggests that an integration of different omic-layers in addition to single omics studies is a useful approach to generate new hypotheses regarding biological mechanisms. CCL22 and cholesterol metabolism in cord blood play a mechanistic role in birthweight.
AU - Chadeau,M
AU - Alfano,R
AU - Ghantous,A
AU - Keski-Rahkonen,P
AU - Chatzi,L
AU - Espin,Perez A
AU - Herceg,Z
AU - Kogevinas,M
AU - de,Kok T
AU - Nawrot,T
AU - Novoloaca,A
AU - Patel,C
AU - Pizzi,C
AU - Robinot,N
AU - Rusconi,F
AU - Scalbert,A
AU - Sunyer,J
AU - Vermeulen,R
AU - Vrijheid,M
AU - Vineis,P
AU - Robinson,O
AU - Plusquin,M
DO - 10.1016/j.metabol.2020.154292
EP - 12
PY - 2020///
SN - 0026-0495
SP - 1
TI - A multi-omic analysis of birthweight in newborn cord blood reveals new underlying mechanisms related to cholesterol metabolism
T2 - Metabolism: clinical and experimental
UR - http://dx.doi.org/10.1016/j.metabol.2020.154292
UR - https://www.sciencedirect.com/science/article/pii/S0026049520301566?via%3Dihub
UR - http://hdl.handle.net/10044/1/80941
VL - 110
ER -