Imperial College London

ProfessorApostolosVoulgarakis

Faculty of Natural SciencesDepartment of Physics

Professor in Global Climate and Environmental Change
 
 
 
//

Contact

 

a.voulgarakis Website

 
 
//

Location

 

Huxley 709BHuxley BuildingSouth Kensington Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Fiedler:2024:10.5194/gmd-17-2387-2024,
author = {Fiedler, S and Naik, V and O'Connor, FM and Smith, CJ and Griffiths, P and Kramer, RJ and Takemura, T and Allen, RJ and Im, U and Kasoar, M and Modak, A and Turnock, S and Voulgarakis, A and Watson-Parris, D and Westervelt, DM and Wilcox, LJ and Zhao, A and Collins, WJ and Schulz, M and Myhre, G and Forster, PM},
doi = {10.5194/gmd-17-2387-2024},
journal = {Geoscientific Model Development},
pages = {2387--2417},
title = {Interactions between atmospheric composition and climate change - progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP},
url = {http://dx.doi.org/10.5194/gmd-17-2387-2024},
volume = {17},
year = {2024}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - The climate science community aims to improve our understanding of climate change due to anthropogenic influences on atmospheric composition and the Earth's surface. Yet not all climate interactions are fully understood, and uncertainty in climate model results persists, as assessed in the latest Intergovernmental Panel on Climate Change (IPCC) assessment report. We synthesize current challenges and emphasize opportunities for advancing our understanding of the interactions between atmospheric composition, air quality, and climate change, as well as for quantifying model diversity. Our perspective is based on expert views from three multi-model intercomparison projects (MIPs) - the Precipitation Driver Response MIP (PDRMIP), the Aerosol Chemistry MIP (AerChemMIP), and the Radiative Forcing MIP (RFMIP). While there are many shared interests and specializations across the MIPs, they have their own scientific foci and specific approaches. The partial overlap between the MIPs proved useful for advancing the understanding of the perturbation-response paradigm through multi-model ensembles of Earth system models of varying complexity. We discuss the challenges of gaining insights from Earth system models that face computational and process representation limits and provide guidance from our lessons learned. Promising i
AU - Fiedler,S
AU - Naik,V
AU - O'Connor,FM
AU - Smith,CJ
AU - Griffiths,P
AU - Kramer,RJ
AU - Takemura,T
AU - Allen,RJ
AU - Im,U
AU - Kasoar,M
AU - Modak,A
AU - Turnock,S
AU - Voulgarakis,A
AU - Watson-Parris,D
AU - Westervelt,DM
AU - Wilcox,LJ
AU - Zhao,A
AU - Collins,WJ
AU - Schulz,M
AU - Myhre,G
AU - Forster,PM
DO - 10.5194/gmd-17-2387-2024
EP - 2417
PY - 2024///
SN - 1991-959X
SP - 2387
TI - Interactions between atmospheric composition and climate change - progress in understanding and future opportunities from AerChemMIP, PDRMIP, and RFMIP
T2 - Geoscientific Model Development
UR - http://dx.doi.org/10.5194/gmd-17-2387-2024
VL - 17
ER -