Imperial College London

ProfessorIainMcCulloch

Faculty of Natural SciencesDepartment of Chemistry

Visiting Professor
 
 
 
//

Contact

 

+44 (0)20 7594 5669i.mcculloch

 
 
//

Location

 

Molecular Sciences Research HubWhite City Campus

//

Summary

 

Publications

Citation

BibTex format

@article{Liu:2023:10.1038/s41467-023-44153-7,
author = {Liu, T and Heimonen, J and Zhang, Q and Yang, C-Y and Huang, J-D and Wu, H-Y and Stoeckel, M-A and van, der Pol TPA and Li, Y and Jeong, SY and Marks, A and Wang, X-Y and Puttisong, Y and Shimolo, AY and Liu, X and Zhang, S and Li, Q and Massetti, M and Chen, WM and Woo, HY and Pei, J and McCulloch, I and Gao, F and Fahlman, M and Kroon, R and Fabiano, S},
doi = {10.1038/s41467-023-44153-7},
journal = {Nat Commun},
title = {Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers.},
url = {http://dx.doi.org/10.1038/s41467-023-44153-7},
volume = {14},
year = {2023}
}

RIS format (EndNote, RefMan)

TY  - JOUR
AB - Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.
AU - Liu,T
AU - Heimonen,J
AU - Zhang,Q
AU - Yang,C-Y
AU - Huang,J-D
AU - Wu,H-Y
AU - Stoeckel,M-A
AU - van,der Pol TPA
AU - Li,Y
AU - Jeong,SY
AU - Marks,A
AU - Wang,X-Y
AU - Puttisong,Y
AU - Shimolo,AY
AU - Liu,X
AU - Zhang,S
AU - Li,Q
AU - Massetti,M
AU - Chen,WM
AU - Woo,HY
AU - Pei,J
AU - McCulloch,I
AU - Gao,F
AU - Fahlman,M
AU - Kroon,R
AU - Fabiano,S
DO - 10.1038/s41467-023-44153-7
PY - 2023///
TI - Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers.
T2 - Nat Commun
UR - http://dx.doi.org/10.1038/s41467-023-44153-7
UR - https://www.ncbi.nlm.nih.gov/pubmed/38114560
VL - 14
ER -