Imperial College London

ProfessorJohnChambers

Faculty of MedicineSchool of Public Health

Professor of Cardiovascular Medicine & Epidemiology
 
 
 
//

Contact

 

+44 (0)7866 365 776john.chambers

 
 
//

Location

 

172Medical SchoolSt Mary's Campus

//

Summary

 

Publications

Publication Type
Year
to

372 results found

Shua IYL, Dewinta RP, Sze Teo P, Low DY, Bhaskaran K, Loh WN, Yen Peng L, Chambers J, Mina Tet al., 2024, The development and validation of a macronutrient and taste preference ranking task in multiethnic Asian population, Food Quality and Preference, Vol: 116, ISSN: 0950-3293

Understanding how changes in individual food preferences in a dynamic environment translate into dietary choices helps to unravel the aetiology of suboptimal nutrition in the population. To facilitate the measurements of food preferences in a multiethnic Asian population, we aimed to develop and validate the Macronutrient and Taste Preference Ranking Task (MTPRT) in an Asian population. We shortlisted 1770 local food items based on the predominant macronutrient groups (≥50 % macronutrient content is protein or fat or carbohydrates), classified their taste clusters, standard-photographed a final list of 36 food items, and developed an electronic survey through cognitive interviews with 30 participants. We then validated the MTPRT amongst 66 participants (mean (SD) age = 47.4 (11.7) years, 57.6 % male, with Chinese: Malay: Indian ethnicity ratio 3:1:1), through random crossover administration of sweet and savoury standard meals with equivalent macronutrients across 2 study visits over a week. The average duration taken to complete MTPRT was 14.1 (5.3) minutes. The sweet and savoury taste preference scores were inversely correlated (r = -0.9, p < 0.0001). The liking and preference for savoury taste were reduced after consuming savoury meals (p = 0.0009). The intra-person correlations for MTPRT scores were all r > 0.6, p < 0.001. The macronutrient preference scores were all positively associated with the self-reported macronutrient intakes derived from the Food Frequency Questionnaire, independent of sex, age, ethnicity, and BMI. Our study demonstrates the validity and reproducibility of MTPRT in multiethnic Asian populations for future evaluation of food preferences in multiethnic Asian population.

Journal article

Keaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, Young WJ, Traylor M, Giri A, Zheng Z, Zeng J, Chasman DI, Morris AP, Caulfield MJ, Hwang S-J, Kooner JS, Conen D, Attia JR, Morrison AC, Loos RJF, Kristiansson K, Schmidt R, Hicks AA, Pramstaller PP, Nelson CP, Samani NJ, Risch L, Gyllensten U, Melander O, Riese H, Wilson JF, Campbell H, Rich SS, Psaty BM, Lu Y, Rotter JI, Guo X, Rice KM, Vollenweider P, Sundström J, Langenberg C, Tobin MD, Giedraitis V, Luan J, Tuomilehto J, Kutalik Z, Ripatti S, Salomaa V, Girotto G, Trompet S, Jukema JW, van der Harst P, Ridker PM, Giulianini F, Vitart V, Goel A, Watkins H, Harris SE, Deary IJ, van der Most PJ, Oldehinkel AJ, Keavney BD, Hayward C, Campbell A, Boehnke M, Scott LJ, Boutin T, Mamasoula C, Järvelin M-R, Peters A, Gieger C, Lakatta EG, Cucca F, Hui J, Knekt P, Enroth S, De Borst MH, Polašek O, Concas MP, Catamo E, Cocca M, Li-Gao R, Hofer E, Schmidt H, Spedicati B, Waldenberger M, Strachan DP, Laan M, Teumer A, Dörr M, Gudnason V, Cook JP, Ruggiero D, Kolcic I, Boerwinkle E, Traglia M, Lehtimäki T, Raitakari OT, Johnson AD, Newton-Cheh C, Brown MJ, Dominiczak AF, Sever PJ, Poulter N, Chambers JC, Elosua R, Siscovick D, Esko T, Metspalu A, Strawbridge RJ, Laakso M, Hamsten A, Hottenga J-J, de Geus E, Morris AD, Palmer CNA, Nolte IM, Milaneschi Y, Marten J, Wright A, Zeggini E, Howson JMM, O'Donnell CJ, Spector T, Nalls MA, Simonsick EM, Liu Y, van Duijn CM, Butterworth AS, Danesh JN, Menni C, Wareham NJ, Khaw K-T, Sun YV, Wilson PWF, Cho K, Visscher PM, Denny JC, Million Veteran Program, Lifelines Cohort Study, CHARGE consortium, ICBP Consortium, Levy D, Edwards TL, Munroe PB, Snieder H, Warren HRet al., 2024, Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits., Nat Genet

Hypertension affects more than one billion people worldwide. Here we identify 113 novel loci, reporting a total of 2,103 independent genetic signals (P < 5 × 10-8) from the largest single-stage blood pressure (BP) genome-wide association study to date (n = 1,028,980 European individuals). These associations explain more than 60% of single nucleotide polymorphism-based BP heritability. Comparing top versus bottom deciles of polygenic risk scores (PRSs) reveals clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI, 15.5-18.2 mmHg, P = 2.22 × 10-126) and more than a sevenfold higher odds of hypertension risk (odds ratio, 7.33; 95% CI, 5.54-9.70; P = 4.13 × 10-44) in an independent dataset. Adding PRS into hypertension-prediction models increased the area under the receiver operating characteristic curve (AUROC) from 0.791 (95% CI, 0.781-0.801) to 0.826 (95% CI, 0.817-0.836, ∆AUROC, 0.035, P = 1.98 × 10-34). We compare the 2,103 loci results in non-European ancestries and show significant PRS associations in a large African-American sample. Secondary analyses implicate 500 genes previously unreported for BP. Our study highlights the role of increasingly large genomic studies for precision health research.

Journal article

Hillary RF, Ng HK, McCartney DL, Elliott HR, Walker RM, Campbell A, Huang F, Direk K, Welsh P, Sattar N, Corley J, Hayward C, McIntosh AM, Sudlow C, Evans KL, Cox SR, Chambers JC, Loh M, Relton CL, Marioni RE, Yousefi PD, Suderman Met al., 2024, Blood-based epigenome-wide analyses of chronic low-grade inflammation across diverse population cohorts., Cell Genom

Chronic inflammation is a hallmark of age-related disease states. The effectiveness of inflammatory proteins including C-reactive protein (CRP) in assessing long-term inflammation is hindered by their phasic nature. DNA methylation (DNAm) signatures of CRP may act as more reliable markers of chronic inflammation. We show that inter-individual differences in DNAm capture 50% of the variance in circulating CRP (N = 17,936, Generation Scotland). We develop a series of DNAm predictors of CRP using state-of-the-art algorithms. An elastic-net-regression-based predictor outperformed competing methods and explained 18% of phenotypic variance in the Lothian Birth Cohort of 1936 (LBC1936) cohort, doubling that of existing DNAm predictors. DNAm predictors performed comparably in four additional test cohorts (Avon Longitudinal Study of Parents and Children, Health for Life in Singapore, Southall and Brent Revisited, and LBC1921), including for individuals of diverse genetic ancestry and different age groups. The best-performing predictor surpassed assay-measured CRP and a genetic score in its associations with 26 health outcomes. Our findings forge new avenues for assessing chronic low-grade inflammation in diverse populations.

Journal article

Karjalainen MK, Karthikeyan S, Oliver-Williams C, Sliz E, Allara E, Fung WT, Surendran P, Zhang W, Jousilahti P, Kristiansson K, Salomaa V, Goodwin M, Hughes DA, Boehnke M, Fernandes Silva L, Yin X, Mahajan A, Neville MJ, van Zuydam NR, de Mutsert R, Li-Gao R, Mook-Kanamori DO, Demirkan A, Liu J, Noordam R, Trompet S, Chen Z, Kartsonaki C, Li L, Lin K, Hagenbeek FA, Hottenga JJ, Pool R, Ikram MA, van Meurs J, Haller T, Milaneschi Y, Kähönen M, Mishra PP, Joshi PK, Macdonald-Dunlop E, Mangino M, Zierer J, Acar IE, Hoyng CB, Lechanteur YTE, Franke L, Kurilshikov A, Zhernakova A, Beekman M, van den Akker EB, Kolcic I, Polasek O, Rudan I, Gieger C, Waldenberger M, Asselbergs FW, China Kadoorie Biobank Collaborative Group, Estonian Biobank Research Team, FinnGen, Hayward C, Fu J, den Hollander AI, Menni C, Spector TD, Wilson JF, Lehtimäki T, Raitakari OT, Penninx BWJH, Esko T, Walters RG, Jukema JW, Sattar N, Ghanbari M, Willems van Dijk K, Karpe F, McCarthy MI, Laakso M, Järvelin M-R, Timpson NJ, Perola M, Kooner JS, Chambers JC, van Duijn C, Slagboom PE, Boomsma DI, Danesh J, Ala-Korpela M, Butterworth AS, Kettunen Jet al., 2024, Genome-wide characterization of circulating metabolic biomarkers., Nature, Vol: 628, Pages: 130-138

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.

Journal article

Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Melloni GEM, Kanoni S, Rayner NW, Bocher O, Arruda AL, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee J-J, Pan I, Taliun D, Parra EJ, Chai J-F, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak S-H, Long J, Sun M, Tong L, Chen W-M, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen C-H, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Thangam M, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang L-C, Chee M-L, Chen J, Chen S-H, Chen Y-T, Chen Z, Chuang L-M, Cushman M, Danesh J, Das SK, de Silva HJ, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt K-U, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Franco OH, Frayling TM, Freedman BI, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Gordon-Larsen P, Gross M, Guare LA, Hackinger S, Hakaste L, Han S, Hattersley AT, Herder C, Horikoshi M, Howard A-G, Hsueh W, Huang M, Huang W, Hung Y-J, Hwang MY, Hwu C-M, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang H-M, Jasmine F, Jiang G, Jonas JB, Jørgensen T, Kamanu FK, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor C-C, Kibriya MG, Kim D-H, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee KM, Lee M-S, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Ligthart S, Lindgren CM, Linneberg A, Liu C-T, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lynch JA, Lyssenko V, Maeda S, Mamakou V, Mansuri SR, Matsuda K, Meitet al., 2024, Genetic drivers of heterogeneity in type 2 diabetes pathophysiology., Nature, Vol: 627, Pages: 347-357

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.

Journal article

Yew YW, Chang BRQ, Mina T, Riboli E, Lee ES, Ngeow J, Elliott P, Chambers JC, Lee J, Loh Met al., 2024, Association of atopic dermatitis with depression and sleep quality in an Asian general population cohort of 8887 participants, Journal of the European Academy of Dermatology and Venereology, ISSN: 0926-9959

Journal article

Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alföldi J, Watts NA, Vittal C, Gauthier LD, Poterba T, Wilson MW, Tarasova Y, Phu W, Grant R, Yohannes MT, Koenig Z, Farjoun Y, Banks E, Donnelly S, Gabriel S, Gupta N, Ferriera S, Tolonen C, Novod S, Bergelson L, Roazen D, Ruano-Rubio V, Covarrubias M, Llanwarne C, Petrillo N, Wade G, Jeandet T, Munshi R, Tibbetts K, Genome Aggregation Database Consortium, O'Donnell-Luria A, Solomonson M, Seed C, Martin AR, Talkowski ME, Rehm HL, Daly MJ, Tiao G, Neale BM, MacArthur DG, Karczewski KJet al., 2024, Author Correction: A genomic mutational constraint map using variation in 76,156 human genomes., Nature, Vol: 626

Journal article

Rozario P, Pinilla M, Gorse L, Vind AC, Robinson KS, Toh GA, Firdaus MJ, Martínez JF, Kerk SK, Lin Z, Chambers JC, Bekker-Jensen S, Meunier E, Zhong Fet al., 2024, Mechanistic basis for potassium efflux-driven activation of the human NLRP1 inflammasome., Proc Natl Acad Sci U S A, Vol: 121

Nigericin, an ionophore derived from Streptomyces hygroscopicus, is arguably the most commonly used tool compound to study the NLRP3 inflammasome. Recent findings, however, showed that nigericin also activates the NLRP1 inflammasome in human keratinocytes. In this study, we resolve the mechanistic basis of nigericin-driven NLRP1 inflammasome activation. In multiple nonhematopoietic cell types, nigericin rapidly and specifically inhibits the elongation stage of the ribosome cycle by depleting cytosolic potassium ions. This activates the ribotoxic stress response (RSR) sensor kinase ZAKα, p38, and JNK, as well as the hyperphosphorylation of the NLRP1 linker domain. As a result, nigericin-induced pyroptosis in human keratinocytes is blocked by extracellular potassium supplementation, ZAKα knockout, or pharmacologic inhibitors of ZAKα and p38 kinase activities. By surveying a panel of ionophores, we show that electroneutrality of ion movement is essential to activate ZAKα-driven RSR and a greater extent of K+ depletion is necessary to activate ZAKα-NLRP1 than NLRP3. These findings resolve the mechanism by which nigericin activates NLRP1 in nonhematopoietic cell types and demonstrate an unexpected connection between RSR, perturbations of potassium ion flux, and innate immunity.

Journal article

Ganji-Arjenaki M, Kamali Z, Evangelou E, Warren HR, Gao H, Ntritsos G, Dimou N, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li -Gao R, Lin WY, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S, Verweij N, Willems SM, Zhao JH, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco M F, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer Eet al., 2024, Prioritization of Kidney Cell Types Highlights Myofibroblast Cells in Regulating Human Blood Pressure, Kidney International Reports, ISSN: 2468-0249

Introduction: Blood pressure (BP) is a highly heritable trait with over 2000 underlying genomic loci identified to date. Although the kidney plays a key role, little is known about specific cell types involved in the genetic regulation of BP. Methods: Here, we applied stratified linkage disequilibrium score (LDSC) regression to connect BP genome-wide association studies (GWAS) results to specific cell types of the mature human kidney. We used the largest single-stage BP genome-wide analysis to date, including up to 1,028,980 adults of European ancestry, and single-cell transcriptomic data from 14 mature human kidneys, with mean age of 41 years. Results: Our analyses prioritized myofibroblasts and endothelial cells, among the total of 33 annotated cell type, as specifically involved in BP regulation (P < 0.05/33, i.e., 0.001515). Enrichment of heritability for systolic BP (SBP) was observed in myofibroblast cells in mature human kidney cortex, and enrichment of heritability for diastolic BP (DBP) was observed in descending vasa recta and peritubular capillary endothelial cells as well as stromal myofibroblast cells. The new finding of myofibroblast, the significant cell type for both BP traits, was consistent in 8 replication efforts using 7 sets of independent data, including in human fetal kidney, in East-Asian (EAS) ancestry, using mouse single-cell RNA sequencing (scRNA-seq) data, and when using another prioritization method. Conclusion: Our findings provide a solid basis for follow-up studies to further identify genes and mechanisms in myofibroblast cells that underlie the regulation of BP.

Journal article

Guo MH, Francioli LC, Stenton SL, Goodrich JK, Watts NA, Singer-Berk M, Groopman E, Darnowsky PW, Solomonson M, Baxter S, gnomAD Project Consortium, Tiao G, Neale BM, Hirschhorn JN, Rehm HL, Daly MJ, O'Donnell-Luria A, Karczewski KJ, MacArthur DG, Samocha KEet al., 2024, Inferring compound heterozygosity from large-scale exome sequencing data., Nat Genet, Vol: 56, Pages: 152-161

Recessive diseases arise when both copies of a gene are impacted by a damaging genetic variant. When a patient carries two potentially causal variants in a gene, accurate diagnosis requires determining that these variants occur on different copies of the chromosome (that is, are in trans) rather than on the same copy (that is, in cis). However, current approaches for determining phase, beyond parental testing, are limited in clinical settings. Here we developed a strategy for inferring phase for rare variant pairs within genes, leveraging genotypes observed in the Genome Aggregation Database (v2, n = 125,748 exomes). Our approach estimates phase with 96% accuracy, both in trio data and in patients with Mendelian conditions and presumed causal compound heterozygous variants. We provide a public resource of phasing estimates for coding variants and counts per gene of rare variants in trans that can aid interpretation of rare co-occurring variants in the context of recessive disease.

Journal article

Chen S, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alföldi J, Watts NA, Vittal C, Gauthier LD, Poterba T, Wilson MW, Tarasova Y, Phu W, Grant R, Yohannes MT, Koenig Z, Farjoun Y, Banks E, Donnelly S, Gabriel S, Gupta N, Ferriera S, Tolonen C, Novod S, Bergelson L, Roazen D, Ruano-Rubio V, Covarrubias M, Llanwarne C, Petrillo N, Wade G, Jeandet T, Munshi R, Tibbetts K, Genome Aggregation Database Consortium, O'Donnell-Luria A, Solomonson M, Seed C, Martin AR, Talkowski ME, Rehm HL, Daly MJ, Tiao G, Neale BM, MacArthur DG, Karczewski KJet al., 2024, A genomic mutational constraint map using variation in 76,156 human genomes., Nature, Vol: 625, Pages: 92-100

The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders1-4, but attempts to assess constraint for non-protein-coding regions have proved more difficult. Here we aggregate, process and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD)-the largest public open-access human genome allele frequency reference dataset-and use it to build a genomic constraint map for the whole genome (genomic non-coding constraint of haploinsufficient variation (Gnocchi)). We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation. As expected, the average constraint for protein-coding sequences is stronger than that for non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants that are implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, which in turn suggests that non-coding constraint can aid the identification of constrained genes that are as yet unrecognized by current gene constraint metrics. We demonstrate that this genome-wide constraint map improves the identification and interpretation of functional human genetic variation.

Journal article

Xie W, Mridha MK, Gupta A, Kusuma D, Butt AM, Hasan M, Brage S, Loh M, Khawaja KI, Pradeepa R, Jha V, Kasturiratne A, Katulanda P, Anjana RM, Chambers JCet al., 2023, Smokeless and combustible tobacco use among 148,944 South Asian adults: a cross-sectional study of South Asia Biobank, BMC Public Health, Vol: 23, ISSN: 1471-2458

Introduction:Tobacco use, in both smoking and smokeless forms, is highly prevalent among South Asian adults. The aims of the study were twofold: (1) describe patterns of SLT and combustible tobacco product use in four South Asian countries stratified by country and sex, and (2) assess the relationships between SLT and smoking intensity, smoking quit attempts, and smoking cessation among South Asian men.Methods:Data were obtained from South Asia Biobank Study, collected between 2018 and 2022 from 148,944 men and women aged 18 years and above, living in Bangladesh, India, Pakistan, or Sri Lanka. Mixed effects multivariable logistic and linear regression were used to quantify the associations of SLT use with quit attempt, cessation, and intensity.Results:Among the four South Asian countries, Bangladesh has the highest rates of current smoking (39.9% for male, 0.4% for female) and current SLT use (24.7% for male and 23.4% for female). Among male adults, ever SLT use was associated with a higher odds of smoking cessation in Bangladesh (OR, 2.88; 95% CI, 2.65, 3.13), India (OR, 2.02; 95% CI, 1.63, 2.50), and Sri Lanka (OR, 1.36; 95% CI, 1.14, 1.62). Ever SLT use and current SLT use was associated with lower smoking intensity in all countries.Conclusions:In this large population-based study of South Asian adults, rates of smoking and SLT use vary widely by country and gender. Men who use SLT products are more likely to abstain from smoking compared with those who do not.

Journal article

Xie W, Rani Paul R, Goon I, Anan A, Rahimi A, Hossain MM, Hersch F, Oldenburg B, Chambers J, Mridha MKet al., 2023, Enhancing care quality and accessibility through digital technology-supported decentralization of hypertension and diabetes management: a proof-of-concept study in rural Bangladesh, BMJ Open, Vol: 13, ISSN: 2044-6055

Objective: The critical shortage of healthcare workers, particularly in rural areas, is a major barrier to quality care for noncommunicable disease (NCD) in low- and middle-income countries. In this proof-of-concept study, we aimed to test a decentralized model for integrated diabetes and hypertension management in rural Bangladesh to improve accessibility and quality of care. Design and setting: The study is a single cohort proof-of-concept study. The key interventions comprised shifting screening, routine monitoring, and dispensing of medication refill from a doctor-managed subdistrict NCD clinic to non-physician health worker managed village level community clinics; a digital care coordination platform was developed for electronic health record, point-of-care support, referral, and routine patient follow-up. The study was conducted in Parbatipur subdistrict, Rangpur Division, Bangladesh.Participants: A total of 624 participants were enrolled in the study (mean[sd] age, 59.5 [12.0]; 65.1% female). Outcomes: Changes in blood pressure and blood glucose control, patient retention, and patient-visit volume at the NCD clinic and community clinics. Results: The proportion of patients with uncontrolled blood pressure reduced from 60% at baseline to 26% at the third month of follow-up, a 56% (IRR 0.44; 95% CI 0.33, 0.57) reduction after adjustment for covariates. The proportion of patients with uncontrolled blood glucose decreased from 74% to 43% at the third month of follow-up. Attrition rates immediately after baseline and during the entire study period were 29.1% and 36.2%, respectively. Conclusion: The proof-of-concept study highlights the potential for involving lower-level primary care facilities and non-physician health workers to rapidly expand much needed services to the patients with hypertension and diabetes in Bangladesh, and in similar global settings. Further investigations are needed to evaluate the effectiveness of decentralized hypertension and diabetes c

Journal article

Seah JYH, Yao J, Hong Y, Lim CGY, Sabanayagam C, Nusinovici S, Gardner DS-L, Loh M, Mueller-Riemenschneider F, Tan CS, Yeo KK, Wong TY, Cheng C-Y, Ma S, Tai ES, Chambers JC, Dam RMV, Sim Xet al., 2023, Risk prediction models for type 2 diabetes using either fasting plasma glucose or HbA1c in Chinese, Malay, and Indians: Results from three multi-ethnic Singapore cohorts, DIABETES RESEARCH AND CLINICAL PRACTICE, Vol: 203, ISSN: 0168-8227

Journal article

van de Vegte Y, Eppinga RP, van der Ende MY, Hagemeijer Y, Mahendran YV, Salfati EY, Smith AE, Tan V, Arking DV, Ntalla I, Appel EA, Schurmann C, Brody J, Rueedi R, Polasek O, Sveinbjornsson G, Lecoeur C, Ladenvall C, Zhao JH, Isaacs A, Wang L, Luan J, Hwang S-J, Mononen NU, Auro KF, Jackson A, Bielak L, Zeng L, Shah N, Nethander M, Campbell A, Rankinen T, Pechlivanis S, Qi L, Zhao W, Rizzi F, Tanaka T, Robino A, Cocca M, Lange L, Mueller-Nurasyid M, Roselli CE, Zhang W, Kleber MJ, Guo X, Lin HE, Pavani F, Galesloot T, Noordam RE, Milaneschi Y, Schraut K, den Hoed M, Degenhardt FE, Trompet S, van den Berg M, Pistis G, Tham Y-CS, Weiss SL, Sim XJ, Li HM, van der Most P, Nolte I, Lyytikaeinen L-PR, Said MA, Witte D, Iribarren CM, Launer LS, Ring S, de Vries P, Sever PP, Linneberg A, Bottinger EM, Padmanabhan S, Psaty B, Sotoodehnia N, Kolcic I, Roshandel DD, Paterson AO, Arnar DF, Gudbjartsson D, Holm H, Balkau BT, Silva CH, Newton-Cheh C, Nikus K, Salo PL, Mohlke KA, Peyser P, Schunkert H, Lorentzon M, Lahti JC, Rao DC, Cornelis MD, Faul JA, Smith J, Stolarz-Skrzypek K, Bandinelli S, Concas MP, Sinagra G, Meitinger T, Waldenberger MF, Sinner M, Strauch KE, Delgado GD, Taylor K, Yao J, Foco L, Melander O, de Graaf J, de Mutsert R, de Geus EJC, Johansson AK, Joshi PK, Lind L, Franke AW, Macfarlane PV, Tarasov K, Tan NB, Felix S, Tai E-SQ, Quek D, Snieder H, Ormel J, Ingelsson M, Lindgren CP, Morris AT, Raitakari O, Hansen T, Assimes T, Gudnason VJ, Timpson NC, Morrison AB, Munroe PP, Strachan D, Grarup N, Loos RJFR, Heckbert S, Vollenweider P, Hayward C, Stefansson K, Froguel P, Groop LJ, Wareham NM, van Duijn CF, Feitosa MJ, O'Donnell C, Kaehoenen M, Perola M, Boehnke M, Kardia SLR, Erdmann J, Palmer CNA, Ohlsson CJ, Porteous DG, Eriksson J, Bouchard C, Moebus S, Kraft PR, Weir D, Cusi D, Ferrucci L, Ulivi S, Girotto G, Correa A, Kaeaeb S, Peters AC, Chambers JS, Kooner J, Maerz WI, Rotter JA, Hicks A, Smith JG, Kiemeney LALMO, Mook-Kanamori D, Penninx BWJH, Gyllensteet al., 2023, Genetic insights into resting heart rate and its role in cardiovascular disease, Nature Communications, Vol: 14, ISSN: 2041-1723

Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.

Journal article

Yew YW, Mina T, Ng HK, Lam BCC, Riboli E, Lee ES, Lee J, Ngeow J, Elliott P, Thng STG, Chambers JC, Loh Met al., 2023, Investigating causal relationships between obesity and skin barrier function in a multi-ethnic Asian general population cohort, International Journal of Obesity, Vol: 47, Pages: 963-969, ISSN: 0307-0565

BACKGROUND: Skin diseases impact significantly on the quality of life and psychology of patients. Obesity has been observed as a risk factor for skin diseases. Skin epidermal barrier dysfunctions are typical manifestations across several dermatological disturbances. OBJECTIVES: We aim to establish the association between obesity and skin physiology measurements and investigate whether obesity may play a possible causal role on skin barrier dysfunction. METHODS: We investigated the relationship of obesity with skin physiology measurements, namely transepidermal water loss (TEWL), skin surface moisture and skin pH in an Asian population cohort (n = 9990). To assess for a possible causal association between body mass index (BMI) and skin physiology measurements, we performed Mendelian Randomization (MR), along with subsequent additional analyses to assess the potential causal impact of known socioeconomic and comorbidities of obesity on TEWL. RESULTS: Every 1 kg/m2 increase in BMI was associated with a 0.221% (95%CI: 0.144-0.298) increase in TEWL (P = 2.82E-08), a 0.336% (95%CI: 0.148-0.524) decrease in skin moisture (P = 4.66E-04) and a 0.184% (95%CI: 0.144-0.224) decrease in pH (P = 1.36E-19), adjusting for age, gender, and ethnicity. Relationships for both TEWL and pH with BMI remained strong (Beta 0.354; 95%CI: 0.189-0.520 and Beta -0.170; 95%CI: -0.253 to -0.087, respectively) even after adjusting for known confounders, with MR experiments further supporting BMI's possible causal relationship with TEWL. Based on additional MR performed, none of the socioeconomic and comorbidities of obesity investigated are likely to have possible causal relationships with TEWL. CONCLUSION: We establish strong association of BMI with TEWL and skin pH, with MR results suggestive of a possible causal relationship of obesity with TEWL. It emphasizes the potential impact of obesity on skin barrier function and therefore op

Journal article

Li JH, Brenner LN, Kaur V, Figueroa K, Schroeder P, Huerta-Chagoya A, MAGIC Investigators, Diabetes Prevention Program DPP Research Group, Udler MS, Leong A, Mercader JM, Florez JCet al., 2023, Genome-wide association analysis identifies ancestry-specific genetic variation associated with acute response to metformin and glipizide in SUGAR-MGH., Diabetologia, Vol: 66, Pages: 1260-1272

AIMS/HYPOTHESIS: Characterisation of genetic variation that influences the response to glucose-lowering medications is instrumental to precision medicine for treatment of type 2 diabetes. The Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH) examined the acute response to metformin and glipizide in order to identify new pharmacogenetic associations for the response to common glucose-lowering medications in individuals at risk of type 2 diabetes. METHODS: One thousand participants at risk for type 2 diabetes from diverse ancestries underwent sequential glipizide and metformin challenges. A genome-wide association study was performed using the Illumina Multi-Ethnic Genotyping Array. Imputation was performed with the TOPMed reference panel. Multiple linear regression using an additive model tested for association between genetic variants and primary endpoints of drug response. In a more focused analysis, we evaluated the influence of 804 unique type 2 diabetes- and glycaemic trait-associated variants on SUGAR-MGH outcomes and performed colocalisation analyses to identify shared genetic signals. RESULTS: Five genome-wide significant variants were associated with metformin or glipizide response. The strongest association was between an African ancestry-specific variant (minor allele frequency [MAFAfr]=0.0283) at rs149403252 and lower fasting glucose at Visit 2 following metformin (p=1.9×10-9); carriers were found to have a 0.94 mmol/l larger decrease in fasting glucose. rs111770298, another African ancestry-specific variant (MAFAfr=0.0536), was associated with a reduced response to metformin (p=2.4×10-8), where carriers had a 0.29 mmol/l increase in fasting glucose compared with non-carriers, who experienced a 0.15 mmol/l decrease. This finding was validated in the Diabetes Prevention Program, where rs111770298 was associated with a worse glycaemic response to metformin: heterozygous carriers had an increa

Journal article

Graham SE, Clarke SL, Wu K-HH, Kanoni S, Zajac GJM, Ramdas S, Surakka I, Ntalla I, Vedantam S, Winkler TW, Locke AE, Marouli E, Hwang MY, Han S, Narita A, Choudhury A, Bentley AR, Ekoru K, Verma A, Trivedi B, Martin HC, Hunt KA, Hui Q, Klarin D, Zhu X, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Ruotsalainen SE, Havulinna AS, Veturi Y, Feng Q, Rosenthal EA, Lingren T, Pacheco JA, Pendergrass SA, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Hindy G, Rasheed A, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graff M, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao J-H, Matsuda F, Jang H-M, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Willemsen G, Wood AR, Ji Y, Gao Z, Haworth S, Mitchell RE, Chai JF, Aadahl M, Yao J, Manichaikul A, Warren HR, Ramirez J, Bork-Jensen J, Karhus LL, Goel A, Sabater-Lleal M, Noordam R, Sidore C, Fiorillo E, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Mollehave LT, Thuesen BH, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfield JP, Daw EW, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Feitosa MF, Wojczynski MK, Preuss M, Mangino M, Christofidou P, Verweij N, Benjamins JW, Engmann J, Kember RL, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Leonard HL, Marten J, Schmidt B, Arendt M, Smyth LJ, Canadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kahonen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Ahmed M, Jackson AU, Yousri NA, Irvin MR, Oldmeadow C, Kim H-N, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Chai X, Prasad G, Lores-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalli S, Warner SC, Wang YX, Wei WB, Nutile T, Ruggiero D, Sung YJ, Hung Y-J, Chen S, Liet al., 2023, Author Correction: The power of genetic diversity in genome-wide association studies of lipids, Nature, Vol: 618, Pages: E19-E20, ISSN: 0028-0836

Journal article

McAllan L, Baranasic D, Villicaña S, Brown S, Zhang W, Lehne B, Adamo M, Jenkinson A, Elkalaawy M, Mohammadi B, Hashemi M, Fernandes N, Lambie N, Williams R, Christiansen C, Yang Y, Zudina L, Lagou V, Tan S, Castillo-Fernandez J, King JWD, Soong R, Elliott P, Scott J, Prokopenko I, Cebola I, Loh M, Lenhard B, Batterham RL, Bell JT, Chambers JC, Kooner JS, Scott WRet al., 2023, Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes, Nature Communications, Vol: 14, Pages: 1-20, ISSN: 2041-1723

DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.

Journal article

Shih CC, Chen J, Lee AS, Bertin N, Hebrard M, Khor CC, Li Z, Tan JHJ, Meah WY, Peh SQ, Mok SQ, Sim KS, Liu J, Wang L, Wong E, Li J, Tin A, Cheng C-Y, Heng C-K, Yuan J-M, Koh W-P, Saw SM, Friedlander Y, Sim X, Chai JF, Chong YS, Davila S, Goh LL, Lee ES, Wong TY, Karnani N, Leong KP, Yeo KK, Chambers JC, Lim SC, Goh RSM, Tan P, Dorajoo Ret al., 2023, A five-safes approach to a secure and scalable genomics data repository, ISCIENCE, Vol: 26

Journal article

Costanzo MC, von Grotthuss M, Massung J, Jang D, Caulkins L, Koesterer R, Gilbert C, Welch RP, Kudtarkar P, Hoang Q, Boughton AP, Singh P, Sun Y, Duby M, Moriondo A, Nguyen T, Smadbeck P, Alexander BR, Brandes M, Carmichael M, Dornbos P, Green T, Huellas-Bruskiewicz KC, Ji Y, Kluge A, McMahon AC, Mercader JM, Ruebenacker O, Sengupta S, Spalding D, Taliun D, AMP-T2D Consortium, Smith P, Thomas MK, Akolkar B, Brosnan MJ, Cherkas A, Chu AY, Fauman EB, Fox CS, Kamphaus TN, Miller MR, Nguyen L, Parsa A, Reilly DF, Ruetten H, Wholley D, Zaghloul NA, Abecasis GR, Altshuler D, Keane TM, McCarthy MI, Gaulton KJ, Florez JC, Boehnke M, Burtt NP, Flannick Jet al., 2023, The Type 2 Diabetes Knowledge Portal: an open access genetic resource dedicated to type 2 diabetes and related traits, Cell Metabolism, Vol: 35, Pages: 695-710.e6, ISSN: 1550-4131

Associations between human genetic variation and clinical phenotypes have become a foundation of biomedical research. Most repositories of these data seek to be disease-agnostic and therefore lack disease-focused views. The Type 2 Diabetes Knowledge Portal (T2DKP) is a public resource of genetic datasets and genomic annotations dedicated to type 2 diabetes (T2D) and related traits. Here, we seek to make the T2DKP more accessible to prospective users and more useful to existing users. First, we evaluate the T2DKP's comprehensiveness by comparing its datasets with those of other repositories. Second, we describe how researchers unfamiliar with human genetic data can begin using and correctly interpreting them via the T2DKP. Third, we describe how existing users can extend their current workflows to use the full suite of tools offered by the T2DKP. We finally discuss the lessons offered by the T2DKP toward the goal of democratizing access to complex disease genetic results.

Journal article

Mina T, Yew YW, Ng HK, Sadhu N, Wansaicheong G, Dalan R, Low DYW, Lam BCC, Riboli E, Lee ES, Ngeow J, Elliott P, Griva K, Loh M, Lee J, Chambers Jet al., 2023, Adiposity impacts cognitive function in Asian populations: an epidemiological and Mendelian Randomization study., The Lancet Regional Health. Western Pacific, Vol: 33, Pages: 1-11, ISSN: 2666-6065

BACKGROUND: Obesity and related metabolic disturbances including diabetes, hypertension and hyperlipidemia predict future cognitive decline. Asia has a high prevalence of both obesity and metabolic disease, potentially amplifying the future burden of dementia in the region. We aimed to investigate the impact of adiposity and metabolic risk on cognitive function in Asian populations, using an epidemiological analysis and a two-sample Mendelian Randomization (MR) study. METHODS: The Health for Life in Singapore (HELIOS) Study is a population-based cohort of South-East-Asian men and women in Singapore, aged 30-84 years. We analyzed 8769 participants with metabolic and cognitive data collected between 2018 and 2021. Whole-body fat mass was quantified with Dual X-Ray Absorptiometry (DEXA). Cognition was assessed using a computerized cognitive battery. An index of general cognition ' g ' was derived through factor analysis. We tested the relationship of fat mass indices and metabolic measures with ' g ' using regression approaches. We then performed inverse-variance-weighted MR of adiposity and metabolic risk factors on ' g ', using summary statistics for genome-wide association studies of BMI, visceral adipose tissue (VAT), waist-hip-ratio (WHR), blood pressure, HDL cholesterol, triglycerides, fasting glucose, HbA1c, and general cognition. FINDINGS: Participants were 58.9% female, and aged 51.4 (11.3) years. In univariate analysis, all 29 adiposity and metabolic measures assessed were associated with ' g ' at P < 0.05. In multivariable analyses, reduced ' g ' was consistently associated with increased visceral fat mass index and lower HDL cholesterol (P < 0.001), but not with blood pressure, triglycerides, or glycemic indices. The reduction in ' g ' associated with 1SD higher visceral fat, or 1SD lower HDL cholesterol, was equivalent to a 0.7 and 0.9-year increase in chronological age respectively (P < 0.001). Inverse vari

Journal article

Suzuki K, Hatzikotoulas K, Southam L, Taylor HJ, Yin X, Lorenz KM, Mandla R, Huerta-Chagoya A, Rayner NW, Bocher O, Arruda ALDSV, Sonehara K, Namba S, Lee SSK, Preuss MH, Petty LE, Schroeder P, Vanderwerff B, Kals M, Bragg F, Lin K, Guo X, Zhang W, Yao J, Kim YJ, Graff M, Takeuchi F, Nano J, Lamri A, Nakatochi M, Moon S, Scott RA, Cook JP, Lee J-J, Pan I, Taliun D, Parra EJ, Chai J-F, Bielak LF, Tabara Y, Hai Y, Thorleifsson G, Grarup N, Sofer T, Wuttke M, Sarnowski C, Gieger C, Nousome D, Trompet S, Kwak S-H, Long J, Sun M, Tong L, Chen W-M, Nongmaithem SS, Noordam R, Lim VJY, Tam CHT, Joo YY, Chen C-H, Raffield LM, Prins BP, Nicolas A, Yanek LR, Chen G, Brody JA, Kabagambe E, An P, Xiang AH, Choi HS, Cade BE, Tan J, Broadaway KA, Williamson A, Kamali Z, Cui J, Adair LS, Adeyemo A, Aguilar-Salinas CA, Ahluwalia TS, Anand SS, Bertoni A, Bork-Jensen J, Brandslund I, Buchanan TA, Burant CF, Butterworth AS, Canouil M, Chan JCN, Chang L-C, Chee M-L, Chen J, Chen S-H, Chen Y-T, Chen Z, Chuang L-M, Cushman M, Danesh J, Das SK, de Silva HJ, Dedoussis G, Dimitrov L, Doumatey AP, Du S, Duan Q, Eckardt K-U, Emery LS, Evans DS, Evans MK, Fischer K, Floyd JS, Ford I, Franco OH, Frayling TM, Freedman BI, Genter P, Gerstein HC, Giedraitis V, González-Villalpando C, González-Villalpando ME, Gordon-Larsen P, Gross M, Guare LA, Hackinger S, Han S, Hattersley AT, Herder C, Horikoshi M, Howard A-G, Hsueh W, Huang M, Huang W, Hung Y-J, Hwang MY, Hwu C-M, Ichihara S, Ikram MA, Ingelsson M, Islam MT, Isono M, Jang H-M, Jasmine F, Jiang G, Jonas JB, Jørgensen T, Kandeel FR, Kasturiratne A, Katsuya T, Kaur V, Kawaguchi T, Keaton JM, Kho AN, Khor C-C, Kibriya MG, Kim D-H, Kronenberg F, Kuusisto J, Läll K, Lange LA, Lee KM, Lee M-S, Lee NR, Leong A, Li L, Li Y, Li-Gao R, Lithgart S, Lindgren CM, Linneberg A, Liu C-T, Liu J, Locke AE, Louie T, Luan J, Luk AO, Luo X, Lv J, Lynch JA, Lyssenko V, Maeda S, Mamakou V, Mansuri SR, Matsuda K, Meitinger T, Metspalu A, Mo H, Morris AD, Nadler JL, Nallet al., 2023, Multi-ancestry genome-wide study in >2.5 million individuals reveals heterogeneity in mechanistic pathways of type 2 diabetes and complications., medRxiv

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

Journal article

Wong E, Bertin N, Hebrard M, Tirado-Magallanes R, Bellis C, Lim WK, Chua CY, Tong PML, Chua R, Mak K, Lim TM, Cheong WY, Thien KE, Goh KT, Chai J-F, Lee J, Sung JJ-Y, Wong TY, Chin CWLD, Gluckman P, Goh LL, Ban KHK, Tan TWM, Van Dam RM, Teo YY, Loh M, Eillot P, Lee ES, Ngeow J, Riboli E, Dalan R, Kassam I, Lakshmanan LN, Lim TH, Ng HK, Mina T, Tay D, Sabanayagam C, Tham YC, Rim T, Aung T, Chee ML, Li H, Chee ML, Yeo KK, Cook SA, Pua CJ, Yang C, Chong YS, Eriksson JG, Tan KH, Yap F, Lim CW, Tsai PK, Chew WJ, Sim WC, Toh L-XG, Lin CB, Sia YY, Koh TH, Meah WY, Tan JHJ, Jeyakani J, Ow J, Ang S, Malik AJ, Kenanov D, Sim X, Cheng C-Y, Davila S, Karnani N, Leong KP, Liu J, Prabhakar S, Maurer-Stroh S, Verma CS, Krishnaswamy P, Goh RSM, Chia I, Ho C, Low D, Virabhak S, Yong J, Zheng W, Seow SW, Seck YK, Koh M, Chambers JC, Tai ES, Tan Pet al., 2023, The Singapore National Precision Medicine Strategy, NATURE GENETICS, Vol: 55, Pages: 178-+, ISSN: 1061-4036

Journal article

Raveendiran AG, Pradeepa R, Ulagamathesan V, Chambers JC, Mohan V, Venkatasubramanian P, Mohan ARet al., 2023, Prevalence of and Risk Factors for Diabesity in Urban Chennai, JOURNAL OF DIABETOLOGY, Vol: 14, Pages: 34-40, ISSN: 2543-3288

Journal article

Loh M, Chambers JC, 2023, Polygenic risk scores for complex diseases: Where are we now?, Singapore Med J, Vol: 64, Pages: 88-89

Journal article

Kanoni S, Graham SE, Wang Y, Surakka I, Ramdas S, Zhu X, Clarke SL, Bhatti KF, Vedantam S, Winkler TW, Locke AE, Marouli E, Zajac GJM, Wu K-HH, Ntalla I, Hui Q, Klarin D, Hilliard AT, Wang Z, Xue C, Thorleifsson G, Helgadottir A, Gudbjartsson DF, Holm H, Olafsson I, Hwang MY, Han S, Akiyama M, Sakaue S, Terao C, Kanai M, Zhou W, Brumpton BM, Rasheed H, Havulinna AS, Veturi Y, Pacheco JA, Rosenthal EA, Lingren T, Feng Q, Kullo IJ, Narita A, Takayama J, Martin HC, Hunt KA, Trivedi B, Haessler J, Giulianini F, Bradford Y, Miller JE, Campbell A, Lin K, Millwood IY, Rasheed A, Hindy G, Faul JD, Zhao W, Weir DR, Turman C, Huang H, Graf M, Choudhury A, Sengupta D, Mahajan A, Brown MR, Zhang W, Yu K, Schmidt EM, Pandit A, Gustafsson S, Yin X, Luan J, Zhao J-H, Matsuda F, Jang H-M, Yoon K, Medina-Gomez C, Pitsillides A, Hottenga JJ, Wood AR, Ji Y, Gao Z, Haworth S, Yousri NA, Mitchell RE, Chai JF, Aadahl M, Bjerregaard AA, Yao J, Manichaikul A, Hwu C-M, Hung Y-J, Warren HR, Ramirez J, Bork-Jensen J, Karhus LL, Goel A, Sabater-Lleal M, Noordam R, Mauro P, Matteo F, McDaid AF, Marques-Vidal P, Wielscher M, Trompet S, Sattar N, Mollehave LT, Munz M, Zeng L, Huang J, Yang B, Poveda A, Kurbasic A, Lamina C, Forer L, Scholz M, Galesloot TE, Bradfeld JP, Ruotsalainen SE, Daw E, Zmuda JM, Mitchell JS, Fuchsberger C, Christensen H, Brody JA, Vazquez-Moreno M, Feitosa MF, Wojczynski MK, Wang Z, Preuss MH, Mangino M, Christofdou P, Verweij N, Benjamins JW, Engmann J, Tsao NL, Verma A, Slieker RC, Lo KS, Zilhao NR, Le P, Kleber ME, Delgado GE, Huo S, Ikeda DD, Iha H, Yang J, Liu J, Leonard HL, Marten J, Frank M, Schmidt B, Smyth LJ, Canadas-Garre M, Wang C, Nakatochi M, Wong A, Hutri-Kahonen N, Sim X, Xia R, Huerta-Chagoya A, Fernandez-Lopez JC, Lyssenko V, Nongmaithem SS, Bayyana S, Stringham HM, Irvin MR, Oldmeadow C, Kim H-N, Ryu S, Timmers PRHJ, Arbeeva L, Dorajoo R, Lange LA, Prasad G, Lores-Motta L, Pauper M, Long J, Li X, Theusch E, Takeuchi F, Spracklen CN, Loukola A, Bollepalliet al., 2022, Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis, Genome Biology, Vol: 23, ISSN: 1474-7596

BackgroundGenetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.ResultsTo expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.ConclusionsTaken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.

Journal article

Leong W-Y, Gupta A, Hasan M, Mahmood S, Siddiqui S, Ahmed S, Goon I, Loh M, Mina T, Lam B, Yew YW, Lee J, Lee ES, Riboli E, Elliott P, Tan GP, Chotirmall S, Wickremasinghe A, Kooner J, Irfan K, Chambers Jet al., 2022, Reference equations for evaluation of spirometry function tests in South Asia, and amongst South Asians living in other countries, European Respiratory Journal, Vol: 60, ISSN: 0903-1936

Background:There is little data to accurate interpretation of spirometry data in SouthAsia, a major global region with high reported burden for chronicrespiratory disease.Method:We measured lung function in 7,453 healthy men and women aged over18 years, from Bangladesh, North India, South India, Pakistan and SriLanka, as part of the South Asia Biobank study. We first assessed theaccuracy of existing equations for predicting normal forced vital capacity(FVC), forced expiratory volume in 1s (FEV1), and FEV1/FVC ratio. Wethen used our data to derive (N=5,589) and internally validate(N=1,864) new prediction equations amongst South Asians, with furtherexternal validation amongst 339 healthy South Asians living inSingapore.Results:GLI2012 and NHANESIII consistently overestimated expiratory volumes(best fit GLI-SEA, mean [sd] z-score: FEV1 -1.29 [1.04]; FVC -1.12[1.12]). Age, height and weight were strong predictors of lung functionin our participants (P<0.001), and sex specific reference equations usingthese three variables were highly accurate in both internal validation (z-scores: FEV1 0.03 [0.99]; FVC 0.04 [0.97]; FEV1/FVC -0.03 [0.99]) andexternal validation (z-scores: FEV1 0.31 [0.99]; FVC 0.24 [0.97];FEV1/FVC 0.16 [0.91]). Further adjustment for study regions improvesthe model fit, with highest accuracy for estimation of region specific lungfunction in South Asia.Conclusion:We present improved equations for predicting lung function in SouthAsians. These offer the opportunity to enhance diagnosis andmanagement of acute and chronic lung diseases in this major globalpopulation.

Journal article

Hawe JS, Saha A, Waldenberger M, Kunze S, Wahl S, Müller-Nurasyid M, Prokisch H, Grallert H, Herder C, Peters A, Strauch K, Theis FJ, Gieger C, Chambers J, Battle A, Heinig Met al., 2022, Network reconstruction for trans acting genetic loci using multi-omics data and prior information., Genome Med, Vol: 14

BACKGROUND: Molecular measurements of the genome, the transcriptome, and the epigenome, often termed multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and use of biological prior information can improve network inference. However, previous efforts were limited in the types of priors used or have only been applied to model systems. In this study, we reconstruct the regulatory networks underlying trans-QTL hotspots using human cohort data and data-driven prior information. METHODS: We devised a new strategy to integrate QTL with human population scale multi-omics data. State-of-the art network inference methods including BDgraph and glasso were applied to these data. Comprehensive prior information to guide network inference was manually curated from large-scale biological databases. The inference approach was extensively benchmarked using simulated data and cross-cohort replication analyses. Best performing methods were subsequently applied to real-world human cohort data. RESULTS: Our benchmarks showed that prior-based strategies outperform methods without prior information in simulated data and show better replication across datasets. Application of our approach to human cohort data highlighted two novel regulatory networks related to schizophrenia and lean body mass for which we generated novel functional hypotheses. CONCLUSIONS: We demonstrate that existing biological knowledge can improve the integrative analysis of networks underlying trans associations and generate novel hypotheses about regulatory mechanisms.

Journal article

Chan SH, Bylstra Y, Teo JX, Kuan JL, Bertin N, Gonzalez-Porta M, Hebrard M, Tirado-Magallanes R, Tan JHJ, Jeyakani J, Li Z, Chai JF, Chong YS, Davila S, Goh LL, Lee ES, Wong E, Wong TY, Prabhakar S, Liu J, Cheng C-Y, Eisenhaber B, Karnani N, Leong KP, Sim X, Yeo KK, Chambers JC, Tai E-S, Tan P, Jamuar SS, Ngeow J, Lim WKet al., 2022, Analysis of clinically relevant variants from ancestrally diverse Asian genomes, Nature Communications, Vol: 13, ISSN: 2041-1723

Asian populations are under-represented in human genomics research. Here, we characterize clinically significant genetic variation in 9051 genomes representing East Asian, South Asian, and severely under-represented Austronesian-speaking Southeast Asian ancestries. We observe disparate genetic risk burden attributable to ancestry-specific recurrent variants and identify individuals with variants specific to ancestries discordant to their self-reported ethnicity, mostly due to cryptic admixture. About 27% of severe recessive disorder genes with appreciable carrier frequencies in Asians are missed by carrier screening panels, and we estimate 0.5% Asian couples at-risk of having an affected child. Prevalence of medically-actionable variant carriers is 3.4% and a further 1.6% harbour variants with potential for pathogenic classification upon additional clinical/experimental evidence. We profile 23 pharmacogenes with high-confidence gene-drug associations and find 22.4% of Asians at-risk of Centers for Disease Control and Prevention Tier 1 genetic conditions concurrently harbour pharmacogenetic variants with actionable phenotypes, highlighting the benefits of pre-emptive pharmacogenomics. Our findings illuminate the diversity in genetic disease epidemiology and opportunities for precision medicine for a large, diverse Asian population.

Journal article

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: respub-action=search.html&id=00167562&limit=30&person=true