Imperial College London

ProfessorSpencerSherwin

Faculty of EngineeringDepartment of Aeronautics

Professor of Computational Fluid Mechanics
 
 
 
//

Contact

 

+44 (0)20 7594 5052s.sherwin Website

 
 
//

Location

 

313BCity and Guilds BuildingSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

339 results found

Cantwell C, Sherwin S, 2016, Nektar++

Nektar++ is a tensor product based finite element package designed to allow one to construct efficient classical low polynomial order h-type solvers (where h is the size of the finite element) as well as higher p-order piecewise polynomial order solvers.

Software

Xu H, Sherwin S, Hall P, Wu Xet al., 2016, The behaviour of Tollmien-Schlichting waves undergoing small-scale localised distortions, Journal of Fluid Mechanics, Vol: 792, Pages: 499-525, ISSN: 1469-7645

This paper is concerned with the behaviour of Tollmien-Schlichting (T-S) waves experiencingsmall localised distortions within an incompressible boundary layer developingover a flat-plate. In particular, the distortion is produced by an isolated roughness elementlocated at Rexc = 440 000. We considered the amplification of an incoming T-S wavegoverned by the two-dimensional linearised Navier-Stokes equations, where the base flowis obtained from the two-dimensional non-linear Navier-Stokes equations. We comparethese solutions with asymptotic analyses which assume a linearised triple-deck theory forthe base flow and determine the validity of this theory in terms of the height of the smallscalehumps/indentations taken into account. The height of the humps/indentations isdenoted by h which is considered to be less than or equal to xcRe−5/8xc(correspondingto h/δ99 < 6% for our choice of Rexc). The rescaled width ˆd(≡ d/(xcRe−3/8xc)) ofthe distortion is of the order O(1) and the width d is shorter than the T-S wavelength(λT S = 11.3 δ99).We observe that for distortions which are smaller than 0.1 of the inner deck height(h/δ99 < 0.4%) the numerical simulations confirm the asymptotic theory in the vicinityof the distortion. For larger distortions which are still within the inner deck (0.4% <h/δ99 < 5.5%) and where the flow is still attached the numerical solutions show thatboth humps and indentations are destabilising and deviate from the linear theory evenin the vicinity of the distortion.We numerically determine the transmission coefficient which provides the relative amplificationof the T-S wave over the distortion as compared to the flat-plate. We observethat for small distortions, h/δ99 < 5.5%, where the width of the distortion is of orderof the boundary layer a maximum amplification of only 2% is achieved. This amplificationcan however be increased as the width of the distortion is increased or

Journal article

Turner M, Moxey D, Sherwin SJ, Peiró Jet al., 2016, Automatic generation of 3D unstructured high-order curvilinear meshes, Pages: 428-443

The generation of suitable, good quality high-order meshes is a significant obstacle in the academic and industrial uptake of high-order CFD methods. These methods have a number of favourable characteristics such as low dispersion and dissipation and higher levels of numerical accuracy than their low-order counterparts, however the methods are highly susceptible to inaccuracies caused by low quality meshes. These meshes require significant curvature to accuratly describe the geometric surfaces, which presents a number of difficult challenges in their generation. As yet, research into the field has produced a number of interesting technologies that go some way towards achieving this goal, but are yet to provide a complete system that can systematically produce curved high-order meshes for arbitrary geometries for CFD analysis. This paper presents our efforts in that direction and introduces an open-source high-order mesh generator, NekMesh, which has been created to bring high-order meshing technologies into one coherent pipeline which aims to produce 3D high-order curvilinear meshes from CAD geometries in a robust and systematic way.

Conference paper

Moura RC, Sherwin SJ, Peiro J, 2015, Eigensolution analysis of spectral/hp continuous Galerkin approximations to advection-diffusion problems: insights into spectral vanishing viscosity, Journal of Computational Physics, Vol: 307, Pages: 401-422, ISSN: 1090-2716

This study addresses linear dispersion–diffusion analysis for the spectral/hp continuousGalerkin (CG) formulation in one dimension. First, numerical dispersion and diffusioncurves are obtained for the advection–diffusion problem and the role of multipleeigencurves peculiar to spectral/hp methods is discussed. From the eigencurves’ behaviour,we observe that CG might feature potentially undesirable non-smooth dispersion/diffusioncharacteristics for under-resolved simulations of problems strongly dominated by eitherconvection or diffusion. Subsequently, the linear advection equation augmented withspectral vanishing viscosity (SVV) is analysed. Dispersion and diffusion characteristics ofCG with SVV-based stabilization are verified to display similar non-smooth features inflow regions where convection is much stronger than dissipation or vice-versa, owing toa dependency of the standard SVV operator on a local Péclet number. First a modificationis proposed to the traditional SVV scaling that enforces a globally constant Péclet numberso as to avoid the previous issues. In addition, a new SVV kernel function is suggestedand shown to provide a more regular behaviour for the eigencurves along with aconsistent increase in resolution power for higher-order discretizations, as measured bythe extent of the wavenumber range where numerical errors are negligible. The dissipationcharacteristics of CG with the SVV modifications suggested are then verified to be broadlyequivalent to those obtained through upwinding in the discontinuous Galerkin (DG)scheme. Nevertheless, for the kernel function proposed, the full upwind DG scheme isfound to have a slightly higher resolution power for the same dissipation levels. Theseresults show that improved CG-SVV characteristics can be pursued via different kernelfunctions with the aid of optimization algorithms.

Journal article

Lombard J-EW, Moxey D, Sherwin SJ, Hoessler JFA, Dhandapani S, Taylor MJet al., 2015, Implicit large-eddy simulation of a wingtip vortex, AIAA Journal, Vol: 54, Pages: 506-518, ISSN: 1533-385X

In this article, recent developments in numerical methods for performing a large-eddy simulation of the formation and evolution of a wingtip vortex are presented. The development of these vortices in the near wake, in combination with the large Reynolds numbers present in these cases, makes these types of test cases particularly challenging to investigate numerically. First, an overview is given of the spectral vanishing viscosity/implicit large-eddy simulation solver that is used to perform the simulations, and techniques are highlighted that have been adopted to solve various numerical issues that arise when studying such cases. To demonstrate the method’s viability, results are presented from numerical simulations of flow over a NACA 0012 profile wingtip at Rec=1.2×106Rec=1.2×106 and they are compared against experimental data, which is to date the highest Reynolds number achieved for a large-eddy simulation that has been correlated with experiments for this test case. The model in this paper correlates favorably with experiment, both for the characteristic jetting in the primary vortex and pressure distribution on the wing surface. The proposed method is of general interest for the modeling of transitioning vortex-dominated flows over complex geometries.

Journal article

Xu H, Mughal MS, Sherwin S, Effect of a 3D surface depression on boundary layer transition, 68th Annual Meeting of the APS Division of Fluid Dynamics

The influence of a three-dimensional surface depression on the transitional boundary layer is investigated numerically. In the boundary layer transition, the primary mode is a Tollmien-Schlichting (TS) wave which is a viscous instability. These modes are receptive to surface roughness interacting with free stream disturbances and/or surface vibrations. In this paper, numerical calculations are carried out to investigate the effect of the depression on instability of the boundary layer. In order to implement linear analysis, two/three (2D/3D)-dimensional nonlinear Navier-Stokes equations are solved by spectral element method to generate base flows in a sufficient large domain. The linear analyses are done by the parabolic stability equations (PSE). Finally, a DNS calculation is done to simulate the boundary layer transition.

Conference paper

Mao X, Blackburn H, Sherwin S, 2015, Optimal suppression of flow perturbations using boundary control, COMPUTERS & FLUIDS, Vol: 121, Pages: 133-144, ISSN: 0045-7930

Journal article

Mengaldo G, De Grazia D, Vincent PE, Sherwin SJet al., 2015, On the connections between discontinuous Galerkin and flux reconstruction schemes: extension to curvilinear meshes, Journal of Scientific Computing, Vol: 67, Pages: 1272-1292, ISSN: 1573-7691

This paper investigates the connections between many popular variants of the well-established discontinuous Galerkin method and the recently developed high-order flux reconstruction approach on irregular tensor-product grids. We explore these connections by analysing three nodal versions of tensor-product discontinuous Galerkin spectral element approximations and three types of flux reconstruction schemes for solving systems of conservation laws on irregular tensor-product meshes. We demonstrate that the existing connections established on regular grids are also valid on deformed and curved meshes for both linear and nonlinear problems, provided that the metric terms are accounted for appropriately. We also find that the aliasing issues arising from nonlinearities either due to a deformed/curved elements or due to the nonlinearity of the equations are equivalent and can be addressed using the same strategies both in the discontinuous Galerkin method and in the flux reconstruction approach. In particular, we show that the discontinuous Galerkin and the flux reconstruction approach are equivalent also when using higher-order quadrature rules that are commonly employed in the context of over- or consistent-integration-based dealiasing methods. The connections found in this work help to complete the picture regarding the relations between these two numerical approaches and show the possibility of using over- or consistent-integration in an equivalent manner for both the approaches.

Journal article

Moxey D, Ekelschot D, Keskin U, Sherwin S, Peiro Jet al., 2015, High-order curvilinear meshing using a thermo-elastic analogy, Computer Aided Design, Vol: 72, Pages: 130-139, ISSN: 0010-4485

With high-order methods becoming increasingly popular in both academia and industry, generating curvilinear meshes that align with the boundaries of complex geometries continues to present a significant challenge. Whereas traditional low-order methods use planar-faced elements, high-order methods introduce curvature into elements that may, if added naively, cause the element to self-intersect. Over the last few years, several curvilinear mesh generation techniques have been designed to tackle this issue, utilising mesh deformation to move the interior nodes of the mesh in order to accommodate curvature at the boundary. Many of these are based on elastic models, where the mesh is treated as a solid body and deformed according to a linear or non-linear stress tensor. However, such methods typically have no explicit control over the validity of the elements in the resulting mesh. In this article, we present an extension of this elastic formulation, whereby a thermal stress term is introduced to 'heat' or 'cool' elements as they deform. We outline a proof-of-concept implementation and show that the adoption of a thermo-elastic analogy leads to an additional degree of robustness, by considering examples in both two and three dimensions.

Journal article

Cantwell CD, Roney CH, Ng FS, Siggers JH, Sherwin SJ, Peters NSet al., 2015, Techniques for automated local activation time annotation and conduction velocity estimation in cardiac mapping, Computers in Biology and Medicine, Vol: 65, Pages: 229-242, ISSN: 0010-4825

Measurements of cardiac conduction velocity provide valuable functional and structural insight into the initiation and perpetuation of cardiac arrhythmias, in both a clinical and laboratory context. The interpretation of activation wavefronts and their propagation can identify mechanistic properties of a broad range of electrophysiological pathologies. However, the sparsity, distribution and uncertainty of recorded data make accurate conduction velocity calculation difficult. A wide range of mathematical approaches have been proposed for addressing this challenge, often targeted towards specific data modalities, species or recording environments. Many of these algorithms require identification of activation times from electrogram recordings which themselves may have complex morphology or low signal-to-noise ratio. This paper surveys algorithms designed for identifying local activation times and computing conduction direction and speed. Their suitability for use in different recording contexts and applications is assessed.

Journal article

Jordi BE, Cotter CJ, Sherwin SJ, 2015, An adaptive selective frequency damping method, Physics of Fluids, Vol: 27, ISSN: 1089-7666

The selective frequency damping (SFD) method is an alternative to classical Newton’smethod to obtain unstable steady-state solutions of dynamical systems. However, thismethod has two main limitations: it does not converge for arbitrary control parameters,and when it does converge, the time necessary to reach a steady-state solution may bevery long. In this paper, we present an adaptive algorithm to address these two issues.We show that by evaluating the dominant eigenvalue of a “partially converged” steadyflow, we can select a control coefficient and a filter width that ensure an optimumconvergence of the SFD method. We apply this adaptive method to several classicaltest cases of computational fluid dynamics and we show that a steady-state solution canbe obtained with a very limited (or without any) a priori knowledge of the flow stabilityproperties

Journal article

Cantwell C, Sherwin SJ, Moxey D, 2015, Nektar++

Nektar++ is a tensor product based finite element package designed to allow one to construct efficient classical low polynomial order h-type solvers (where h is the size of the finite element) as well as higher p-order piecewise polynomial order solvers.

Software

Tzortzis KN, Roney CH, Qureshi NA, Ng FU, Lim PHANGBOON, Sherwin S, Peters NS, Cantwell Cet al., 2015, Influence of left atrial geometry on rotor core trajectories in a model of atrial fibrillation, Computing in Cardiology, Publisher: IEEE, Pages: 481-484, ISSN: 2325-8861

Left atrial anatomy and myocardial architecture areknown to influence rotor initiation and maintenance.However, identifying their relative contribution clinicallyis challenging. The present study aims to investigate insilico the effect of left atrial geometry in isolation onrotor generation and evolution through thespatiotemporal tracking of phase singularities. Aftermeandering for a short period of time, rotors areattracted to specific areas of the chamber where there ishigh curvature, primarily near the base of the left atrialappendage and the junctions of the pulmonary veins. Thissuggests that the left atrial anatomy could play a key rolein the perpetuation of fibrillatory activity.

Conference paper

Ali RL, Cantwell CD, Qureshi NA, Roney CH, Phang Boon Lim, Sherwin SJ, Siggers JH, Peters NSet al., 2015, Automated fiducial point selection for reducing registration error in the co-localisation of left atrium electroanatomic and imaging data., 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Publisher: IEEE, Pages: 1989-1992, ISSN: 1557-170X

Registration of electroanatomic surfaces and segmented images for the co-localisation of structural and functional data typically requires the manual selection of fiducial points, which are used to initialise automated surface registration. The identification of equivalent points on geometric features by the human eye is heavily subjective, and error in their selection may lead to distortion of the transformed surface and subsequently limit the accuracy of data co-localisation. We propose that the manual trimming of the pulmonary veins through the region of greatest geometrical curvature, coupled with an automated angle-based fiducial-point selection algorithm, significantly reduces target registration error compared with direct manual selection of fiducial points.

Conference paper

Cantwell C, sherwin SJ, moxey DM, 2015, Nektar++

Nektar++ is a tensor product based finite element package designed to allow one to construct efficient classical low polynomial order h-type solvers (where h is the size of the finite element) as well as higher p-order piecewise polynomial order solvers.

Software

Yakovlev S, Moxey D, Kirby RM, Sherwin SJet al., 2015, To CG or to HDG: A Comparative Study in 3D, Journal of Scientific Computing, Vol: 67, Pages: 192-220, ISSN: 0885-7474

Since the inception of discontinuous Galerkin (DG) methods for elliptic problems, there has existed a question of whether DG methods can be made more computationally efficient than continuous Galerkin (CG) methods. Fewer degrees of freedom, approximation properties for elliptic problems together with the number of optimization techniques, such as static condensation, available within CG framework made it challenging for DG methods to be competitive until recently. However, with the introduction of a static-condensation-amenable DG method—the hybridizable discontinuous Galerkin (HDG) method—it has become possible to perform a realistic comparison of CG and HDG methods when applied to elliptic problems. In this work, we extend upon an earlier 2D comparative study, providing numerical results and discussion of the CG and HDG method performance in three dimensions. The comparison categories covered include steady-state elliptic and time-dependent parabolic problems, various element types and serial and parallel performance. The postprocessing technique, which allows for superconvergence in the HDG case, is also discussed. Depending on the direct linear system solver used and the type of the problem (steady-state vs. time-dependent) in question the HDG method either outperforms or demonstrates a comparable performance when compared with the CG method. The HDG method however falls behind performance-wise when the iterative solver is used, which indicates the need for an effective preconditioning strategy for the method.

Journal article

Rocco G, Zaki TA, Mao X, Blackburn H, Sherwin SJet al., 2015, Floquet and transient growth stability analysis of a flow through a compressor passage, AEROSPACE SCIENCE AND TECHNOLOGY, Vol: 44, Pages: 116-124, ISSN: 1270-9638

Journal article

Mengaldo G, De Grazia D, Moxey D, Vincent P, Sherwin Set al., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, Journal of Computational Physics, Vol: 299, Pages: 56-81, ISSN: 0021-9991

Journal article

Moura RC, Sherwin SJ, Peiro J, 2015, Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods, Journal of Computational Physics, Vol: 298, Pages: 695-710, ISSN: 0021-9991

Journal article

Mao X, Blackburn HM, Sherwin SJ, 2015, Nonlinear optimal suppression of vortex shedding from a circular cylinder, Journal of Fluid Mechanics, Vol: 775, Pages: 241-265, ISSN: 1469-7645

This study is focused on two- and three-dimensional incompressible flow pasta circular cylinder for Reynolds number Re 6 1000. To gain insight into themechanisms underlying the suppression of unsteadiness for this flow we determinethe nonlinear optimal open-loop control driven by surface-normal wall transpiration.The spanwise-constant wall transpiration is allowed to oscillate in time, althoughsteady forcing is determined to be most effective. At low levels of control cost,defined as the square integration of the control, the sensitivity of unsteadiness withrespect to wall transpiration is a good approximation of the optimal control. Thedistribution of this sensitivity suggests that the optimal control at small magnitude isachieved by applying suction upstream of the upper and lower separation points andblowing at the trailing edge. At high levels of wall transpiration, the assumptionsunderlying the linearized sensitivity calculation become invalid since the base flowis eventually altered by the size of the control forcing. The large-magnitude optimalcontrol is observed to spread downstream of the separation point and draw the shearlayer separation towards the rear of the cylinder through suction, while blowingalong the centreline eliminates the recirculation bubble in the wake. We furtherdemonstrate that it is possible to completely suppress vortex shedding in two- andthree-dimensional flow past a circular cylinder up to Re = 1000, accompanied by70 % drag reduction when a nonlinear optimal control of moderate magnitude (withroot-mean-square value 8 % of the free-stream velocity) is applied. This is confirmedthrough linearized stability analysis about the steady-state solution when the nonlinearoptimal wall transpiration is applied. While continuously distributed wall transpirationis not physically realizable, the study highlights localized regions where discretecontrol strategies could be further developed. It also highlights the appropriate rangeof application of

Journal article

Mengaldo G, Kravtsova M, Ruban A, SHERWIN Set al., 2015, Triple-deck and direct numerical simulation analyses high-speed subsonic flows past a roughness element, Journal of Fluid Mechanics, Vol: 774, Pages: 311-323, ISSN: 1469-7645

This paper is concerned with the boundary-layer separation in subsonic and transonic flows caused by a two-dimensional isolated wall roughness. The process of the separation is analysed by means of two approaches: the direct numerical simulation (DNS) of the flow using the Navier–Stokes equations, and the numerical solution of the triple-deck equations. Since the triple-deck theory relies on the assumption that the Reynolds number ( ) is large, we performed the Navier–Stokes calculations at Re = 4 x 10^5 based on the distance of the roughness element from the leading edge of the flat plate. This Re is also relevant for aeronautical applications. Two sets of calculation were conducted with the free-stream Mach number Ma_∞ = 0.5 and Ma_∞ = 0.87 . We used different roughness element heights, some of which were large enough to cause a well-developed separation region behind the roughness. We found that the two approaches generally compare well with one another in terms of wall shear stress, longitudinal pressure gradient and detachment/reattachment points of the separation bubbles (when present). The main differences were found in proximity to the centre of the roughness element, where the wall shear stress and longitudinal pressure gradient predicted by the triple-deck theory are noticeably different from those predicted by DNS. In addition, DNS predicts slightly longer separation regions.

Journal article

Peiro J, Moxey D, Hazan M, Sherwin SJet al., 2015, On the generation of curvilinear meshes through subdivision of isoparametric elements, New Challenges in Grid Generation and Adaptivity for Scientific Computing, Editors: Perotto, Formaggia, Publisher: Springer, ISBN: 9783319060538

This volume collects selected contributions from the “Fourth Tetrahedron Workshop on Grid Generation for Numerical Computations”, which was held in Verbania, Italy in July 2013.

Book chapter

Xu H, lombard J, sherwin S, Delaying natural transition of a boundary layer using smooth steps, Sixth International Symposium on Bifurcations and Instabilities in Fluid Dynamics

Conference paper

Cantwell CD, Moxey D, Comerford A, Bolis A, Rocco G, Mengaldo G, de Grazia D, Yakovlev S, Lombard J-E, Ekelschot D, Jordi B, Xu H, Mohamied Y, Eskilsson C, Nelson B, Vos P, Biotto C, Kirby RM, Sherwin SJet al., 2015, Nektar++: An open-source spectral/hp element framework, Computer Physics Communications, Vol: 192, Pages: 205-219, ISSN: 1879-2944

Nektar++ is an open-source software framework designed to support the development of high-performance scalable solvers for partial differential equations using the spectral/hphp element method. High-order methods are gaining prominence in several engineering and biomedical applications due to their improved accuracy over low-order techniques at reduced computational cost for a given number of degrees of freedom. However, their proliferation is often limited by their complexity, which makes these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation by encapsulating the mathematical complexities of the underlying method within an efficient C++ framework, making the techniques more accessible to the broader scientific and industrial communities. The software supports a variety of discretisation techniques and implementation strategies, supporting methods research as well as application-focused computation, and the multi-layered structure of the framework allows the user to embrace as much or as little of the complexity as they need. The libraries capture the mathematical constructs of spectral/hphp element methods, while the associated collection of pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users who wish to develop solutions for addressing questions in their own scientific domains.

Journal article

Rocco G, Sherwin SJ, 2015, Stabilisation of the absolute instability of a flow past a cylinder via spanwise forcing at Re=180, IUTAM/ABCM Symposium on Laminar Turbulent Transition, Publisher: ELSEVIER SCIENCE BV, Pages: 115-121, ISSN: 2210-9838

Conference paper

Rocco G, Sherwin SJ, 2015, The Role of Spanwise Forcing on Vortex Shedding Suppression in a Flow Past a Cylinder, INSTABILITY AND CONTROL OF MASSIVELY SEPARATED FLOWS, Vol: 107, Pages: 105-110, ISSN: 0926-5112

Journal article

Moxey D, Hazan M, Sherwin SJ, Peiro Jet al., 2015, Curvilinear mesh generation for boundary layer problems, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol: 128, Pages: 41-64, ISSN: 1612-2909

© Springer International Publishing Switzerland 2015. In this article, we give an overview of a new technique for unstructured curvilinear boundary layer grid generation, which uses the isoparametric mappings that define elements in an existing coarse prismatic grid to produce a refined mesh capable of resolving arbitrarily thin boundary layers. We demonstrate that the technique always produces valid grids given an initially valid coarse mesh, and additionally show how this can be extended to convert hybrid meshes to meshes containing only simplicial elements.

Journal article

Moura RC, Sherwin S, Peiro J, 2015, Modified Equation Analysis for the Discontinuous Galerkin Formulation, 10th International Conference on Spectral and High-Order Methods (ICOSAHOM), Publisher: SPRINGER-VERLAG BERLIN, Pages: 375-383, ISSN: 1439-7358

Conference paper

Peiro J, Moxey D, Jordi B, Sherwin SJ, Nelson BW, Kirby RM, Haimes Ret al., 2015, High-order visualization with ElVis, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol: 128, Pages: 521-534, ISSN: 1612-2909

© Springer International Publishing Switzerland 2015. Accurate visualization of high-order meshes and flow fields is a fundamental tool for the verification, validation, analysis and interpretation of high-order flow simulations. Standard visualization tools based on piecewise linear approximations can be used for the display of highorder fields but their accuracy is restricted by computer memory and processing time. More often than not, the accurate visualization of complex flows using this strategy requires computational resources beyond the reach of most users. This chapter describes ElVis, a truly high-order and interactive visualization system created for the accurate and interactive visualization of scalar fields produced by high-order spectral/hp finite element simulations. We show some examples that motivate the need for such a visualization system and illustrate some of its features for the display and analysis of simulation data.

Journal article

Cohen J, Cantwell C, Moxey D, Austing P, Darlington J, Sherwin S, Nowell J, Guo Xet al., 2015, TemPSS: A service providing software parameter templates and profiles for scientific HPC, IEEE International Conference On eScience, Publisher: IEEE, Pages: 78-87, ISSN: 2325-372X

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00156735&limit=30&person=true&page=3&respub-action=search.html